Virapinib

Last updated

Virapinib
Virapinib structure.png
Identifiers
  • [3-[7-methyl-4-(methylamino)-6,8-dihydro-5H-pyrido[3,4-d]pyrimidin-2-yl]pyrrolidin-1-yl]-[4-(4-methylpiperidin-1-yl)phenyl]methanone
CAS Number
PubChem CID
ChemSpider
Chemical and physical data
Formula C26H36N6O
Molar mass 448.615 g·mol−1
3D model (JSmol)
  • CC1CCN(CC1)C2=CC=C(C=C2)C(=O)N3CCC(C3)C4=NC5=C(CCN(C5)C)C(=N4)NC
  • InChI=1S/C26H36N6O/c1-18-8-13-31(14-9-18)21-6-4-19(5-7-21)26(33)32-15-10-20(16-32)24-28-23-17-30(3)12-11-22(23)25(27-2)29-24/h4-7,18,20H,8-17H2,1-3H3,(H,27,28,29)
  • Key:LUAVWTOZVHIDSI-UHFFFAOYSA-N

Virapinib is an antiviral drug which is the first drug developed that acts by inhibiting viral entry into cells via macropinocytosis. While it is only in early developmental stages, initial testing showed broad spectrum antiviral activity against a range of viruses including SARS-CoV-2, Monkeypox virus, Ebolavirus and tick-borne encephalitis virus. [1]

Related Research Articles

<span class="mw-page-title-main">Antiviral drug</span> Medication used to treat a viral infection

Antiviral drugs are a class of medication used for treating viral infections. Most antivirals target specific viruses, while a broad-spectrum antiviral is effective against a wide range of viruses. Antiviral drugs are a class of antimicrobials, a larger group which also includes antibiotic, antifungal and antiparasitic drugs, or antiviral drugs based on monoclonal antibodies. Most antivirals are considered relatively harmless to the host, and therefore can be used to treat infections. They should be distinguished from virucides, which are not medication but deactivate or destroy virus particles, either inside or outside the body. Natural virucides are produced by some plants such as eucalyptus and Australian tea trees.

<span class="mw-page-title-main">Zanamivir</span> Influenza medication

Zanamivir is a medication used to treat and prevent influenza caused by influenza A and influenza B viruses. It is a neuraminidase inhibitor and was developed by the Australian biotech firm Biota Holdings. It was licensed to Glaxo in 1990 and approved in the US in 1999, only for use as a treatment for influenza. In 2006, it was approved for prevention of influenza A and B. Zanamivir was the first neuraminidase inhibitor commercially developed. It is marketed by GlaxoSmithKline under the trade name Relenza as a powder for oral inhalation.

Neuraminidase inhibitors (NAIs) are a class of drugs which block the neuraminidase enzyme. They are a commonly used antiviral drug type against influenza. Viral neuraminidases are essential for influenza reproduction, facilitating viral budding from the host cell. Oseltamivir (Tamiflu), zanamivir (Relenza), laninamivir (Inavir), and peramivir belong to this class. Unlike the M2 inhibitors, which work only against the influenza A virus, NAIs act against both influenza A and influenza B.

<span class="mw-page-title-main">Umifenovir</span> Chemical compound

Umifenovir, sold under the brand name Arbidol, is sold and used as an antiviral medication for influenza in Russia and China. The drug is manufactured by Pharmstandard. It is not approved by the U.S. Food and Drug Administration (FDA) for the treatment or prevention of influenza.

<i>Molluscum contagiosum virus</i> Species of virus

Molluscum contagiosum virus (MCV) is a species of DNA poxvirus that causes the human skin infection molluscum contagiosum. Molluscum contagiosum affects about 200,000 people a year, about 1% of all diagnosed skin diseases. Diagnosis is based on the size and shape of the skin lesions and can be confirmed with a biopsy, as the virus cannot be routinely cultured. Molluscum contagiosum virus is the only species in the genus Molluscipoxvirus. MCV is a member of the subfamily Chordopoxvirinae of family Poxviridae. Other commonly known viruses that reside in the subfamily Chordopoxvirinae are variola virus and monkeypox virus.

The maturation inhibitors are a class of antiviral drugs for the treatment of infection with HIV. They act by interfering with the maturation of the virus. Specifically, drugs in this class disrupt the final step in the processing of the HIV-1 gag protein, the cleavage of its immediate precursor by the enzyme HIV-1 protease. Unlike the class of drugs known as protease inhibitors, maturation inhibitors bind the gag protein, not the protease. This leads to the formation of noninfectious, immature virus particles, incapable of infecting other cells. No other class of drugs shares this mechanism of action, thus maturation inhibitors retain inhibitory activity against HIV infections with resistance.

<span class="mw-page-title-main">Viral neuraminidase</span> InterPro Family

Viral neuraminidase is a type of neuraminidase found on the surface of influenza viruses that enables the virus to be released from the host cell. Neuraminidases are enzymes that cleave sialic acid groups from glycoproteins. Viral neuraminidase was discovered by Alfred Gottschalk at the Walter and Eliza Hall Institute in 1957. Neuraminidase inhibitors are antiviral agents that inhibit influenza viral neuraminidase activity and are of major importance in the control of influenza.

<span class="mw-page-title-main">Laninamivir</span> Chemical compound

Laninamivir (CS-8958) is a neuraminidase inhibitor that is a drug used for the treatment and prophylaxis of Influenzavirus A and Influenzavirus B. It is currently in Phase III clinical trials. It is a long-acting neuraminidase inhibitor administered by nasal inhalation.

<span class="mw-page-title-main">FGI-104</span> Chemical compound

FGI-104 is the name of an experimental broad-spectrum antiviral drug, with activity against a range of viruses including hepatitis B, hepatitis C, HIV, Ebola virus, and Venezuelan equine encephalitis virus.

<span class="mw-page-title-main">FGI-106</span> Chemical compound

FGI-106 is a broad-spectrum antiviral drug developed as a potential treatment for enveloped RNA viruses, in particular viral hemorrhagic fevers from the bunyavirus, flavivirus and filovirus families. It acts as an inhibitor which blocks viral entry into host cells. In animal tests FGI-106 shows both prophylactic and curative action against a range of deadly viruses for which few existing treatments are available, including the bunyaviruses hantavirus, Rift Valley fever virus and Crimean-Congo hemorrhagic fever virus, the flavivirus dengue virus, and the filoviruses Ebola virus and Marburg virus.

<span class="mw-page-title-main">FGI-103</span> Chemical compound

FGI-103 is an antiviral drug developed as a potential treatment for the filoviruses Ebola virus and Marburg virus. In tests on mice FGI-103 was effective against both Ebola and Marburg viruses when administered up to 48 hours after infection. The mechanism of action of FGI-103 has however not yet been established, as it was found not to be acting by any of the known mechanisms used by similar antiviral drugs.

Neuraminidase inhibitors inhibit enzymatic activity of the enzyme neuraminidase (sialidase). These type of inhibitors have been introduced as anti-influenza drugs as they prevent the virus from exiting infected cells and thus stop further spreading of the virus. Neuraminidase inhibitors for human neuraminidase (hNEU) have the potential to be useful drugs as the enzyme plays a role in several signaling pathways in cells and is implicated in diseases such as diabetes and cancer.

<span class="mw-page-title-main">MK-608</span> Chemical compound

MK-608 is an antiviral drug, an adenosine analog. It was originally developed by Merck & Co. as a treatment for hepatitis C, but despite promising results in animal studies, it was ultimately unsuccessful in clinical trials. Subsequently it has been widely used in antiviral research and has shown activity against a range of viruses, including Dengue fever, tick-borne encephalitis virus, poliovirus, and most recently Zika virus, in both in vitro and animal models. Since it has already failed in human clinical trials previously, it is unlikely MK-608 itself will be developed as an antiviral medication, but the continuing lack of treatment options for these emerging viral diseases means that much research continues using MK-608 and related antiviral drugs.

<span class="mw-page-title-main">NITD008</span> Chemical compound

NITD008 is an antiviral drug classified as an adenosine analog. It was developed as a potential treatment for flavivirus infections and shows broad spectrum antiviral activity against many related viruses such as dengue virus, West Nile virus, yellow fever virus, Powassan virus, hepatitis C virus, Kyasanur Forest disease virus, Omsk hemorrhagic fever virus, and Zika virus. However, NITD008 proved too toxic in pre-clinical animal testing to be suitable for human trials, but it continues to be used in research to find improved treatments for emerging viral diseases.

<span class="mw-page-title-main">Narlaprevir</span> Chemical compound

Narlaprevir, is an inhibitor of NS3/4A serine protease, intended for the treatment of chronic hepatitis C caused by genotype 1 virus in combination with other antiviral drugs.

<span class="mw-page-title-main">Glecaprevir</span> Chemical compound

Glecaprevir (INN,) is a hepatitis C virus (HCV) nonstructural (NS) protein 3/4A protease inhibitor that was identified jointly by AbbVie and Enanta Pharmaceuticals. It is being developed as a treatment of chronic hepatitis C infection in co-formulation with an HCV NS5A inhibitor pibrentasvir. Together they demonstrated potent antiviral activity against major HCV genotypes and high barriers to resistance in vitro.

<span class="mw-page-title-main">Bictegravir/emtricitabine/tenofovir alafenamide</span> Fixed dose combination HIV drug

Bictegravir/emtricitabine/tenofovir alafenamide, sold under the brand name Biktarvy, is a fixed-dose combination antiretroviral medication for the treatment of HIV/AIDS. It contains bictegravir, a human immunodeficiency virus type 1 (HIV-1) integrase strand transfer inhibitor; emtricitabine, an HIV-1 nucleoside analog reverse transcriptase inhibitor; and tenofovir alafenamide, an HIV-1 nucleoside analog reverse transcriptase inhibitor.

Broad-spectrum antivirals (BSAs) are a class of molecules or compounds, which inhibit the infection of multiple viruses from the same or different virus families. BSAs could be divided into experimental and investigational agents, and approved drugs. BSAs work by inhibiting viral proteins or by targeting host cell factors and processes exploited by different viruses during infection. As of 2021, there are 150 known BSAs in varying stages of development, effective against 78 human viruses. BSAs are potential candidates for treatment of emerging and re-emerging viruses, such as ebola, marburg, and SARS-CoV-2. Many BSAs show antiviral activity against other viruses than originally investigated. Efforts in drug repurposing for SARS-CoV-2 is currently underway. A database of BSAs and viruses they inhibit could be found here.

<span class="mw-page-title-main">Nirmatrelvir</span> COVID-19 antiviral medication

Nirmatrelvir is an antiviral medication developed by Pfizer which acts as an orally active 3C-like protease inhibitor. It is part of a nirmatrelvir/ritonavir combination used to treat COVID-19 and sold under the brand name Paxlovid.

In the management of HIV/AIDS, HIV capsid inhibitors are antiretroviral medicines that target the capsid shell of the virus. This is in contrast to most current antiretroviral drugs used to treat HIV, which do not directly target the viral capsid. These have also been termed "Capsid-targeting Antivirals", "Capsid Effectors", and "Capsid Assembly Modulators (CAMs)". Because of this, drugs that specifically inhibit the HIV capsid are being developed in order to reduce the replication of HIV, and treat infections that have become resistant to current antiretroviral therapies.

References

  1. Porebski B, Christ W, Corman A, Haraldsson M, Barz M, Lidemalm L, et al. (July 2024). "Discovery of a novel inhibitor of macropinocytosis with antiviral activity". Molecular Therapy. doi: 10.1016/j.ymthe.2024.06.038 . hdl: 10902/34119 . PMID   38956870.