Virtual valuation

Last updated

In auction theory, particularly Bayesian-optimal mechanism design, a virtual valuation of an agent is a function that measures the surplus that can be extracted from that agent.

Contents

A typical application is a seller who wants to sell an item to a potential buyer and wants to decide on the optimal price. The optimal price depends on the valuation of the buyer to the item, . The seller does not know exactly, but he assumes that is a random variable, with some cumulative distribution function and probability distribution function .

The virtual valuation of the agent is defined as:

Applications

A key theorem of Myerson [1] says that:

The expected profit of any truthful mechanism is equal to its expected virtual surplus.

In the case of a single buyer, this implies that the price should be determined according to the equation:

This guarantees that the buyer will buy the item, if and only if his virtual-valuation is weakly-positive, so the seller will have a weakly-positive expected profit.

This exactly equals the optimal sale price – the price that maximizes the expected value of the seller's profit, given the distribution of valuations:

Virtual valuations can be used to construct Bayesian-optimal mechanisms also when there are multiple buyers, or different item-types. [2]

Examples

1. The buyer's valuation has a continuous uniform distribution in . So:

2. The buyer's valuation has a normal distribution with mean 0 and standard deviation 1. is monotonically increasing, and crosses the x-axis in about 0.75, so this is the optimal price. The crossing point moves right when the standard deviation is larger. [3]

Regularity

A probability distribution function is called regular if its virtual-valuation function is weakly-increasing. Regularity is important because it implies that the virtual-surplus can be maximized by a truthful mechanism.

A sufficient condition for regularity is monotone hazard rate, which means that the following function is weakly-increasing:

Monotone-hazard-rate implies regularity, but the opposite is not true.

The proof is simple: the monotone hazard rate implies is weakly increasing in and therefore the virtual valuation is strictly increasing in .

See also

Related Research Articles

<span class="mw-page-title-main">Mechanism design</span> Field in game theory

Mechanism design is a field in economics and game theory that takes an objectives-first approach to designing economic mechanisms or incentives, toward desired objectives, in strategic settings, where players act rationally. Because it starts at the end of the game, then goes backwards, it is also called reverse game theory. It has broad applications, from economics and politics in fields such as market design, auction theory and social choice theory to networked-systems.

<span class="mw-page-title-main">Vickrey auction</span> Auction priced by second-highest sealed bid

A Vickrey auction or sealed-bid second-price auction (SBSPA) is a type of sealed-bid auction. Bidders submit written bids without knowing the bid of the other people in the auction. The highest bidder wins but the price paid is the second-highest bid. This type of auction is strategically similar to an English auction and gives bidders an incentive to bid their true value. The auction was first described academically by Columbia University professor William Vickrey in 1961 though it had been used by stamp collectors since 1893. In 1797 Johann Wolfgang von Goethe sold a manuscript using a sealed-bid, second-price auction.

In economics, a reservationprice is a limit on the price of a good or a service. On the demand side, it is the highest price that a buyer is willing to pay; on the supply side, it is the lowest price a seller is willing to accept for a good or service.

In mathematics and economics, the envelope theorem is a major result about the differentiability properties of the value function of a parameterized optimization problem. As we change parameters of the objective, the envelope theorem shows that, in a certain sense, changes in the optimizer of the objective do not contribute to the change in the objective function. The envelope theorem is an important tool for comparative statics of optimization models.

<span class="mw-page-title-main">Double auction</span>

A double auction is a process of buying and selling goods with multiple sellers and multiple buyers. Potential buyers submit their bids and potential sellers submit their ask prices to the market institution, and then the market institution chooses some price p that clears the market: all the sellers who asked less than p sell and all buyers who bid more than p buy at this price p. Buyers and sellers that bid or ask for exactly p are also included. A common example of a double auction is stock exchange.

The Myerson–Satterthwaite theorem is an important result in mechanism design and the economics of asymmetric information, and named for Roger Myerson and Mark Satterthwaite. Informally, the result says that there is no efficient way for two parties to trade a good when they each have secret and probabilistically varying valuations for it, without the risk of forcing one party to trade at a loss.

<span class="mw-page-title-main">Auction theory</span> Branch of applied economics regarding the behavior of bidders in auctions

Auction theory is an applied branch of economics which deals with how bidders act in auction markets and researches how the features of auction markets incentivise predictable outcomes. Auction theory is a tool used to inform the design of real-world auctions. Sellers use auction theory to raise higher revenues while allowing buyers to procure at a lower cost. The conference of the price between the buyer and seller is an economic equilibrium. Auction theorists design rules for auctions to address issues which can lead to market failure. The design of these rulesets encourages optimal bidding strategies among a variety of informational settings. The 2020 Nobel Prize for Economics was awarded to Paul R. Milgrom and Robert B. Wilson “for improvements to auction theory and inventions of new auction formats.”

<span class="mw-page-title-main">First-price sealed-bid auction</span> Auction where all participants concurrently submit undisclosed bids

A first-price sealed-bid auction (FPSBA) is a common type of auction. It is also known as blind auction. In this type of auction, all bidders simultaneously submit sealed bids so that no bidder knows the bid of any other participant. The highest bidder pays the price that was submitted.

<span class="mw-page-title-main">Monotone likelihood ratio</span> Statistical property

In statistics, the monotone likelihood ratio property is a property of the ratio of two probability density functions (PDFs). Formally, distributions ƒ(x) and g(x) bear the property if

Competitive equilibrium is a concept of economic equilibrium, introduced by Kenneth Arrow and Gérard Debreu in 1951, appropriate for the analysis of commodity markets with flexible prices and many traders, and serving as the benchmark of efficiency in economic analysis. It relies crucially on the assumption of a competitive environment where each trader decides upon a quantity that is so small compared to the total quantity traded in the market that their individual transactions have no influence on the prices. Competitive markets are an ideal standard by which other market structures are evaluated.

<span class="mw-page-title-main">All-pay auction</span>

In economics and game theory, an all-pay auction is an auction in which every bidder must pay regardless of whether they win the prize, which is awarded to the highest bidder as in a conventional auction. As shown by Riley and Samuelson (1981), equilibrium bidding in an all pay auction with private information is revenue equivalent to bidding in a sealed high bid or open ascending price auction.

<span class="mw-page-title-main">Revenue equivalence</span>

Revenue equivalence is a concept in auction theory that states that given certain conditions, any mechanism that results in the same outcomes also has the same expected revenue.

A random-sampling mechanism (RSM) is a truthful mechanism that uses sampling in order to achieve approximately-optimal gain in prior-free mechanisms and prior-independent mechanisms.

A Bayesian-optimal mechanism (BOM) is a mechanism in which the designer does not know the valuations of the agents for whom the mechanism is designed, but the designer knows that they are random variables and knows the probability distribution of these variables.

A prior-free mechanism (PFM) is a mechanism in which the designer does not have any information on the agents' valuations, not even that they are random variables from some unknown probability distribution.

A Prior-independent mechanism (PIM) is a mechanism in which the designer knows that the agents' valuations are drawn from some probability distribution, but does not know the distribution.

Bayesian-optimal pricing is a kind of algorithmic pricing in which a seller determines the sell-prices based on probabilistic assumptions on the valuations of the buyers. It is a simple kind of a Bayesian-optimal mechanism, in which the price is determined in advance without collecting actual buyers' bids.

<span class="mw-page-title-main">Price of anarchy in auctions</span>

The Price of Anarchy (PoA) is a concept in game theory and mechanism design that measures how the social welfare of a system degrades due to selfish behavior of its agents. It has been studied extensively in various contexts, particularly in auctions.

Regularity, sometimes called Myerson's regularity, is a property of probability distributions used in auction theory and revenue management. Examples of distributions that satisfy this condition include Gaussian, uniform, and exponential; some power law distributions also satisfy regularity. Distributions that satisfy the regularity condition are often referred to as "regular distributions".

Adding controlled noise from predetermined distributions is a way of designing differentially private mechanisms. This technique is useful for designing private mechanisms for real-valued functions on sensitive data. Some commonly used distributions for adding noise include Laplace and Gaussian distributions.

References

  1. Myerson, Roger B. (1981). "Optimal Auction Design". Mathematics of Operations Research . 6: 58. doi:10.1287/moor.6.1.58.
  2. Chawla, Shuchi; Hartline, Jason D.; Kleinberg, Robert (2007). "Algorithmic pricing via virtual valuations". Proceedings of the 8th ACM conference on Electronic commerce – EC '07. p. 243. arXiv: 0808.1671 . doi:10.1145/1250910.1250946. ISBN   9781595936530.
  3. See this Desmos graph.