Volcaniclastics are geologic materials composed of broken fragments (clasts) of volcanic rock. [1] These encompass all clastic volcanic materials, regardless of what process fragmented the rock, how it was subsequently transported, what environment it was deposited in, or whether nonvolcanic material is mingled with the volcanic clasts. [2] The United States Geological Survey defines volcaniclastics somewhat more narrowly, to include only rock composed of volcanic rock fragments that have been transported some distance from their place of origin. [3]
In the broad sense [2] [4] of the term, volcaniclastics includes pyroclastic rocks such as the Bandelier Tuff; [5] cinder cones and other tephra deposits; the basal and capping breccia that characterize ʻaʻā lava flows; and lahars and debris flows of volcanic origin. [6]
Volcaniclastics make up more of the volume of many volcanoes than do lava flows. Volcaniclastics may have contributed as much as a third of all sedimentation in the geologic record. [2]
Volcaniclastics are composed of a range of pyroclastic detritus mixed with epiclastic sediments and formed in variable depositional environments. [7] [8] Volcaniclastics include pyroclastic rock and tephra; volcanic autoclastic, alloclastic, and epiclastic materials; and fault gouge where faults displace volcanic rock. [2] All are defined below. These can be divided into primary volcaniclastics and secondary volcaniclastics (epivolcaniclastics). [9]
Primary volcaniclastic deposits (Characteristic clasts must be more than 75% of volume) | Secondary volcanic deposits (epivolcaniclastic deposits) |
---|---|
Pyroclastic tuff or tephra (Pyroclastic deposit) | Epiclastic deposits have more than 75% epiclasts in the general case. They are epivolcanicastic deposits if they have recognizable volcanic fragments in any proportion. |
Pyroclastic material is composed of rock fragments produced by explosive volcanism and erupted from the vent as individual particles, [1] without reference to the particle origin or the nature of the eruption. [2] These may include particles of country rock entrained within the vent. [10] Accumulations of pyroclastic material that have not been consolidated are described as tephra, while those that have undergone significant consolidation are described as pyroclastic rock. [2] [11] Hydroclastic material is a special case of pyroclastic material produced by a variety of processes at magma-water interfaces. [1]
Autoclastic volcanic material is produced by processes active during movement of solid or semisolid lava. These include rock fragments that are produced within volcanic vents but not extruded, [1] rock fragments produced by motion or gas explosions within volcanic flows, or rock fragments produced by gravitational collapse of lava domes or spines. [2] The characteristic basal and capping breccia of ʻaʻā lava flows [12] are autoclastic volcaniclastics.
Alloclastic volcanic material is formed by fragmentation of existing igneous rock by subsurface igneous activity that may or may not involve magma intrusions. Fault gouge produced by motion along a fault in volcanic rock is also a type of volcaniclastic material. [2]
Volcanic epiclastic material (epivolcaniclastics [13] ) contains a substantial fraction of epiclasts (rock fragments produced by weathering and erosion) derived from volcanic rock. [2]
Deposits containing pyroclastic material that has been reworked in stream or lake environments or mingled with epiclastic material (whether volcanic or nonvolcanic) pose a special difficulty and are among the materials most usefully described simply as volcaniclastic. [14] A more specific classification is problematic for these cases. [11] [15] [16] The Espinaso Formation of New Mexico is an example of a rock unit that is composed of a complex mixture of pyroclastic and volcanic epiclastic material and so is described simply as volcaniclastic. [17] Another is the Washburn Group of the Yellowstone area, which includes debris flows of reworked volcanic ash and volcanic epiclastic rock. [18]
Mixed pyroclastic-epiclastic deposits may be classified by average clast size and percentage of pyroclastic material. [11]
Pyroclastic | Tuffites (mixed pyroclastic-epiclastic) | Epiclastic (volcanic or nonvolcanic) | Average clast size (mm) |
---|---|---|---|
Agglomerate, agglutinate pyroclastic breccia | Tuffaceous conglomerate, tuffaceous breccia | Conglomerate, Breccia | > 64 |
Lapillistone | 2 – 64 | ||
Coarse ash tuff | Tuffaceous sandstone | Sandstone | 0.0625 – 2 |
Fine ash tuff | Tuffaceous siltstone | Siltstone | 0.004 – 0.0625 |
Tuffaceous mudstone, tuffaceous shale | Mudstone, shale | < 0.004 | |
75–100% pyroclasts | 25–75% pyroclasts | 0–25% pyroclasts |
A volcano is a rupture in the crust of a planetary-mass object, such as Earth, that allows hot lava, volcanic ash, and gases to escape from a magma chamber below the surface. The process that forms volcanoes is called volcanism.
Tuff is a type of rock made of volcanic ash ejected from a vent during a volcanic eruption. Following ejection and deposition, the ash is lithified into a solid rock. Rock that contains greater than 75% ash is considered tuff, while rock containing 25% to 75% ash is described as tuffaceous. Tuff composed of sandy volcanic material can be referred to as volcanic sandstone.
Rhyolite is the most silica-rich of volcanic rocks. It is generally glassy or fine-grained (aphanitic) in texture, but may be porphyritic, containing larger mineral crystals (phenocrysts) in an otherwise fine-grained groundmass. The mineral assemblage is predominantly quartz, sanidine, and plagioclase. It is the extrusive equivalent of granite.
Breccia is a rock composed of large angular broken fragments of minerals or rocks cemented together by a fine-grained matrix.
Volcanic glass is the amorphous (uncrystallized) product of rapidly cooling magma. Like all types of glass, it is a state of matter intermediate between the closely packed, highly ordered array of a crystal and the highly disordered array of liquid. Volcanic glass may refer to the interstitial material, or matrix, in an aphanitic (fine-grained) volcanic rock, or to any of several types of vitreous igneous rocks.
Volcanic cones are among the simplest volcanic landforms. They are built by ejecta from a volcanic vent, piling up around the vent in the shape of a cone with a central crater. Volcanic cones are of different types, depending upon the nature and size of the fragments ejected during the eruption. Types of volcanic cones include stratocones, spatter cones, tuff cones, and cinder cones.
Volcanic rocks are rocks formed from lava erupted from a volcano. Like all rock types, the concept of volcanic rock is artificial, and in nature volcanic rocks grade into hypabyssal and metamorphic rocks and constitute an important element of some sediments and sedimentary rocks. For these reasons, in geology, volcanics and shallow hypabyssal rocks are not always treated as distinct. In the context of Precambrian shield geology, the term "volcanic" is often applied to what are strictly metavolcanic rocks. Volcanic rocks and sediment that form from magma erupted into the air are called "pyroclastics," and these are also technically sedimentary rocks.
Pyroclastic rocks are clastic rocks composed of rock fragments produced and ejected by explosive volcanic eruptions. The individual rock fragments are known as pyroclasts. Pyroclastic rocks are a type of volcaniclastic deposit, which are deposits made predominantly of volcanic particles. 'Phreatic' pyroclastic deposits are a variety of pyroclastic rock that forms from volcanic steam explosions and they are entirely made of accidental clasts. 'Phreatomagmatic' pyroclastic deposits are formed from explosive interaction of magma with groundwater. The word pyroclastic is derived from the Greek πῦρ, meaning fire; and κλαστός, meaning broken.
The lithology of a rock unit is a description of its physical characteristics visible at outcrop, in hand or core samples, or with low magnification microscopy. Physical characteristics include colour, texture, grain size, and composition. Lithology may refer to either a detailed description of these characteristics, or a summary of the gross physical character of a rock. Examples of lithologies in the second sense include sandstone, slate, basalt, or limestone.
Ignimbrite is a type of volcanic rock, consisting of hardened tuff. Ignimbrites form from the deposits of pyroclastic flows, which are a hot suspension of particles and gases flowing rapidly from a volcano, driven by being denser than the surrounding atmosphere. New Zealand geologist Patrick Marshall (1869–1950) coined the term ignimbrite from the Latin igni- [fire] and imbri- [rain].
Scoria is a pyroclastic, highly vesicular, dark-colored volcanic rock formed by ejection from a volcano as a molten blob and cooled in the air to form discrete grains called clasts. It is typically dark in color, and basaltic or andesitic in composition. Scoria has relatively low density, as it is riddled with macroscopic ellipsoidal vesicles, but in contrast to pumice, scoria always has a specific gravity greater than 1 and sinks in water.
Agglomerate is a coarse accumulation of large blocks of volcanic material that contains at least 75% bombs. Volcanic bombs differ from volcanic blocks in that their shape records fluidal surfaces: they may, for example, have ropy, cauliform, scoriaceous, folded, spindle, spatter, ribbon, ragged, or amoeboid shapes. Globular masses of lava may have been shot from the crater at a time when partly molten lava was exposed, and was frequently shattered by sudden outbursts of steam. These bombs were viscous at the moment of ejection and by rotation in the air acquired their shape. They are commonly 1 to 2 feet in diameter, but specimens as large as 12 feet (3.7 m) have been observed. There is less variety in their composition at any one volcanic centre than in the case of the lithic blocks, and their composition indicates the type of magma being erupted.
Clastic rocks are composed of fragments, or clasts, of pre-existing minerals and rock. A clast is a fragment of geological detritus, chunks, and smaller grains of rock broken off other rocks by physical weathering. Geologists use the term clastic to refer to sedimentary rocks and particles in sediment transport, whether in suspension or as bed load, and in sediment deposits.
Several types of volcanic eruptions—during which material is expelled from a volcanic vent or fissure—have been distinguished by volcanologists. These are often named after famous volcanoes where that type of behavior has been observed. Some volcanoes may exhibit only one characteristic type of eruption during a period of activity, while others may display an entire sequence of types all in one eruptive series.
The Back River volcanic complex is an Archean stratovolcano spanning the Northwest Territories–Nunavut border in Northern Canada. It is located 480 kilometres (298 mi) northwest of Yellowknife and to the northwest of the Back River from which it takes its name. The volcano constitutes the Back Group of the Yellowknife Supergroup and is somewhat anomalous in the Slave craton because it has undergone only a low degree of deformation and is subhorizontal. The southern half of the complex is exposed at the crest of a small dome. This is the eroded portion of the stratovolcano that has been preserved in an upright position. The complex comprises four volcanic sedimentary sequences that correspond to the phases of growth and destruction of this stratovolcano.
This glossary of geology is a list of definitions of terms and concepts relevant to geology, its sub-disciplines, and related fields. For other terms related to the Earth sciences, see Glossary of geography terms.
Pilot Knob is the eroded core of an extinct volcano located in Austin, Texas, United States. It is near Austin–Bergstrom International Airport and McKinney Falls State Park.
A peperite is a type of volcaniclastic rock consisting of sedimentary rock that contains fragments of younger igneous material and is formed when magma comes into contact with wet sediments. The term was originally used to describe rocks from the Limagne region of France, from the similarity in appearance of the granules of dark basalt in the light-coloured limestone to black pepper. Typically the igneous fragments are glassy and show chilled-margins to the sedimentary matrix, distinguishing them from clasts with a sedimentary origin.
Tuffite is a tuff containing both pyroclastic and detrital materials, but predominantly pyroclasts.
Archean felsic volcanic rocks are felsic volcanic rocks that were formed in the Archean Eon. The term "felsic" means that the rocks have silica content of 62–78%. Given that the Earth formed at ~4.5 billion year ago, Archean felsic volcanic rocks provide clues on the Earth's first volcanic activities on the Earth's surface started 500 million years after the Earth's formation.