Weighted automaton

Last updated
Hasse diagram of some classes of quantitative automata, ordered by expressiveness. Quantitative automata.svg
Hasse diagram of some classes of quantitative automata, ordered by expressiveness.

In theoretical computer science and formal language theory, a weighted automaton or weighted finite-state machine is a generalization of a finite-state machine in which the edges have weights, for example real numbers or integers. Finite-state machines are only capable of answering decision problems; they take as input a string and produce a Boolean output, i.e. either "accept" or "reject". In contrast, weighted automata produce a quantitative output, for example a count of how many answers are possible on a given input string, or a probability of how likely the input string is according to a probability distribution. [2] They are one of the simplest studied models of quantitative automata. [1] :Fig.1

Contents

The definition of a weighted automaton is generally given over an arbitrary semiring , an abstract set with an addition operation and a multiplication operation . The automaton consists of a finite set of states, a finite input alphabet of characters and edges which are labeled with both a character in and a weight in . The weight of any path in the automaton is defined to be the product of weights along the path, and the weight of a string is the sum of the weights of all paths which are labeled with that string. The weighted automaton thus defines a function from to . [2]

Weighted automata generalize deterministic finite automata (DFAs) and nondeterministic finite automata (NFAs), which correspond to weighted automata over the Boolean semiring, where addition is logical disjunction and multiplication is logical conjunction. In the DFA case, there is only one accepting path for any input string, so disjunction is not applied. When the weights are real numbers and the outgoing weights for each state add to one, weighted automata can be considered a probabilistic model and are also known as probabilistic automata. These machines define a probability distribution over all strings, and are related to other probabilistic models such as Markov decision processes and Markov chains.

Weighted automata have applications in natural language processing where they are used to assign weights to words and sentences, [3] [2] :571–596 as well as in image compression. [2] :453–480 They were first introduced by Marcel-Paul Schützenberger in his 1961 paper On the definition of a family of automata. [4] Since their introduction, many extensions have been proposed, for example nested weighted automata, [5] cost register automata, [6] and weighted finite-state transducers. [7] Researchers have studied weighted automata from the perspective of learning a machine from its input-output behavior [8] (see computational learning theory) and studying decidability questions. [9]

Definition

A commutative semiring (or rig) is a set R equipped with two distinguished elements and addition and multiplication operations and such that is commutative and associative with identity , is commutative and associative with identity , distributes over , and 0 is an absorbing element for .

A weighted automaton over is a tuple where:

A path on input is a finite path in the graph, where the concatenation of the character labels equals . The weight of the path is the product () of the weights along the path, additionally multiplied by the initial and final weights . The weight of the word is the sum () of the weights of all paths on input (or 0 if there are no accepting paths). In this way the machine defines a function .

Ambiguity and determinism

Since is a set of transitions, weighted automata allow multiple transitions (or paths) on a single input string. Therefore a weighted automaton can be considered analogous to a nondeterministic finite automaton (NFA). As is the case with NFAs, restrictions of weighted automata are considered that correspond to the concepts of deterministic finite automaton and unambiguous finite automaton (deterministic weighted automata and unambiguous weighted automata, respectively).

First, a preliminary definition: the underlying NFA of is an NFA formed by removing all transitions with weight and then erasing all of the weights on the transitions , so that the new transition set lies in . The initial states and final states are the set of states such that and , respectively.

A weighted automaton is deterministic if the underlying NFA is deterministic and unambiguous if the underlying NFA is unambiguous. Every deterministic weighted automaton is unambiguous.

In both the deterministic and unambiguous cases, there is always at most one accepting path, so the operation is never applied and can be omitted from the definition.

Variations

See also

Related Research Articles

<span class="mw-page-title-main">Finite-state machine</span> Mathematical model of computation

A finite-state machine (FSM) or finite-state automaton, finite automaton, or simply a state machine, is a mathematical model of computation. It is an abstract machine that can be in exactly one of a finite number of states at any given time. The FSM can change from one state to another in response to some inputs; the change from one state to another is called a transition. An FSM is defined by a list of its states, its initial state, and the inputs that trigger each transition. Finite-state machines are of two types—deterministic finite-state machines and non-deterministic finite-state machines. For any non-deterministic finite-state machine, an equivalent deterministic one can be constructed.

<span class="mw-page-title-main">Pushdown automaton</span> Type of automaton

In the theory of computation, a branch of theoretical computer science, a pushdown automaton (PDA) is a type of automaton that employs a stack.

<span class="mw-page-title-main">Automata theory</span> Study of abstract machines and automata

Automata theory is the study of abstract machines and automata, as well as the computational problems that can be solved using them. It is a theory in theoretical computer science with close connections to mathematical logic. The word automata comes from the Greek word αὐτόματος, which means "self-acting, self-willed, self-moving". An automaton is an abstract self-propelled computing device which follows a predetermined sequence of operations automatically. An automaton with a finite number of states is called a finite automaton (FA) or finite-state machine (FSM). The figure on the right illustrates a finite-state machine, which is a well-known type of automaton. This automaton consists of states and transitions. As the automaton sees a symbol of input, it makes a transition to another state, according to its transition function, which takes the previous state and current input symbol as its arguments.

<span class="mw-page-title-main">Büchi automaton</span>

In computer science and automata theory, a deterministic Büchi automaton is a theoretical machine which either accepts or rejects infinite inputs. Such a machine has a set of states and a transition function, which determines which state the machine should move to from its current state when it reads the next input character. Some states are accepting states and one state is the start state. The machine accepts an input if and only if it will pass through an accepting state infinitely many times as it reads the input.

<span class="mw-page-title-main">Deterministic finite automaton</span> Finite-state machine

In the theory of computation, a branch of theoretical computer science, a deterministic finite automaton (DFA)—also known as deterministic finite acceptor (DFA), deterministic finite-state machine (DFSM), or deterministic finite-state automaton (DFSA)—is a finite-state machine that accepts or rejects a given string of symbols, by running through a state sequence uniquely determined by the string. Deterministic refers to the uniqueness of the computation run. In search of the simplest models to capture finite-state machines, Warren McCulloch and Walter Pitts were among the first researchers to introduce a concept similar to finite automata in 1943.

In automata theory, a finite-state machine is called a deterministic finite automaton (DFA), if

In automata theory, an alternating finite automaton (AFA) is a nondeterministic finite automaton whose transitions are divided into existential and universal transitions. For example, let A be an alternating automaton.

A finite-state transducer (FST) is a finite-state machine with two memory tapes, following the terminology for Turing machines: an input tape and an output tape. This contrasts with an ordinary finite-state automaton, which has a single tape. An FST is a type of finite-state automaton (FSA) that maps between two sets of symbols. An FST is more general than an FSA. An FSA defines a formal language by defining a set of accepted strings, while an FST defines a relation between sets of strings.

In the theory of computation and automata theory, the powerset construction or subset construction is a standard method for converting a nondeterministic finite automaton (NFA) into a deterministic finite automaton (DFA) which recognizes the same formal language. It is important in theory because it establishes that NFAs, despite their additional flexibility, are unable to recognize any language that cannot be recognized by some DFA. It is also important in practice for converting easier-to-construct NFAs into more efficiently executable DFAs. However, if the NFA has n states, the resulting DFA may have up to 2n states, an exponentially larger number, which sometimes makes the construction impractical for large NFAs.

In automata theory, a deterministic pushdown automaton is a variation of the pushdown automaton. The class of deterministic pushdown automata accepts the deterministic context-free languages, a proper subset of context-free languages.

In computer science, in particular in automata theory, a two-way finite automaton is a finite automaton that is allowed to re-read its input.

In quantum computing, quantum finite automata (QFA) or quantum state machines are a quantum analog of probabilistic automata or a Markov decision process. They provide a mathematical abstraction of real-world quantum computers. Several types of automata may be defined, including measure-once and measure-many automata. Quantum finite automata can also be understood as the quantization of subshifts of finite type, or as a quantization of Markov chains. QFAs are, in turn, special cases of geometric finite automata or topological finite automata.

In mathematics and computer science, the probabilistic automaton (PA) is a generalization of the nondeterministic finite automaton; it includes the probability of a given transition into the transition function, turning it into a transition matrix. Thus, the probabilistic automaton also generalizes the concepts of a Markov chain and of a subshift of finite type. The languages recognized by probabilistic automata are called stochastic languages; these include the regular languages as a subset. The number of stochastic languages is uncountable.

A queue machine, queue automaton, or pullup automaton (PUA) is a finite state machine with the ability to store and retrieve data from an infinite-memory queue. It is a model of computation equivalent to a Turing machine, and therefore it can process the same class of formal languages.

An embedded pushdown automaton or EPDA is a computational model for parsing languages generated by tree-adjoining grammars (TAGs). It is similar to the context-free grammar-parsing pushdown automaton, but instead of using a plain stack to store symbols, it has a stack of iterated stacks that store symbols, giving TAGs a generative capacity between context-free and context-sensitive grammars, or a subset of mildly context-sensitive grammars. Embedded pushdown automata should not be confused with nested stack automata which have more computational power.

<span class="mw-page-title-main">DFA minimization</span> Task of transforming a deterministic finite automaton

In automata theory, DFA minimization is the task of transforming a given deterministic finite automaton (DFA) into an equivalent DFA that has a minimum number of states. Here, two DFAs are called equivalent if they recognize the same regular language. Several different algorithms accomplishing this task are known and described in standard textbooks on automata theory.

In computer science, more specifically in automata and formal language theory, nested words are a concept proposed by Alur and Madhusudan as a joint generalization of words, as traditionally used for modelling linearly ordered structures, and of ordered unranked trees, as traditionally used for modelling hierarchical structures. Finite-state acceptors for nested words, so-called nested word automata, then give a more expressive generalization of finite automata on words. The linear encodings of languages accepted by finite nested word automata gives the class of visibly pushdown languages. The latter language class lies properly between the regular languages and the deterministic context-free languages. Since their introduction in 2004, these concepts have triggered much research in that area.

In computer science and mathematical logic, an infinite-tree automaton is a state machine that deals with infinite tree structures. It can be seen as an extension of top-down finite-tree automata to infinite trees or as an extension of infinite-word automata to infinite trees.

<span class="mw-page-title-main">Noncommutative signal-flow graph</span>

In automata theory and control theory, branches of mathematics, theoretical computer science and systems engineering, a noncommutative signal-flow graph is a tool for modeling interconnected systems and state machines by mapping the edges of a directed graph to a ring or semiring.

In automata theory, an unambiguous finite automaton (UFA) is a nondeterministic finite automaton (NFA) such that each word has at most one accepting path. Each deterministic finite automaton (DFA) is an UFA, but not vice versa. DFA, UFA, and NFA recognize exactly the same class of formal languages. On the one hand, an NFA can be exponentially smaller than an equivalent DFA. On the other hand, some problems are easily solved on DFAs and not on UFAs. For example, given an automaton A, an automaton A which accepts the complement of A can be computed in linear time when A is a DFA, whereas it is known that this cannot be done in polynomial time for UFAs. Hence UFAs are a mix of the worlds of DFA and of NFA; in some cases, they lead to smaller automata than DFA and quicker algorithms than NFA.

References

  1. 1 2 3 4 Chatterjee, Krishnendu; Henzinger, Thomas A.; Otop, Jan (2016). "Quantitative Monitor Automata". In Rival, Xavier (ed.). Static Analysis. Lecture Notes in Computer Science. Vol. 9837. Berlin, Heidelberg: Springer. pp. 23–38. doi:10.1007/978-3-662-53413-7_2. ISBN   978-3-662-53413-7.
  2. 1 2 3 4 5 6 Droste, Manfred; Kuich, Werner; Vogler, Heiko, eds. (2009). Handbook of Weighted Automata. Monographs in Theoretical Computer Science. An EATCS Series. Bibcode:2009hwa..book.....D. doi:10.1007/978-3-642-01492-5. ISBN   978-3-642-01491-8. ISSN   1431-2654. chs.1-4, pp.3-26, 69-71, 122-126.
  3. Chiang, David. "Weighted Automata" (PDF). Natural Language Processing (CSE 40657/60657), course notes, Fall 2019. Retrieved 2021-11-09.
  4. 1 2 Schützenberger, M. P. (1961-09-01). "On the definition of a family of automata". Information and Control. 4 (2): 245–270. doi:10.1016/S0019-9958(61)80020-X. ISSN   0019-9958.
  5. Chatterjee, Krishnendu; Henzinger, Thomas A.; Otop, Jan (2017-12-14). "Nested Weighted Automata". ACM Transactions on Computational Logic. 18 (4): 31:1–31:44. arXiv: 1504.06117 . doi:10.1145/3152769. ISSN   1529-3785. S2CID   15070803.
  6. Alur, Rajeev; D'Antoni, Loris; Deshmukh, Jyotirmoy; Raghothaman, Mukund; Yuan, Yifei (2013). "Regular Functions and Cost Register Automata". 2013 28th Annual ACM/IEEE Symposium on Logic in Computer Science. pp. 13–22. doi:10.1109/LICS.2013.65. ISBN   978-1-4799-0413-6. S2CID   1286659.
  7. Mohri, Mehryar; Pereira, Fernando; Riley, Michael (2002-01-01). "Weighted finite-state transducers in speech recognition". Computer Speech & Language. 16 (1): 69–88. doi:10.1006/csla.2001.0184. ISSN   0885-2308.
  8. Balle, Borja; Mohri, Mehryar (2015). "Learning Weighted Automata". In Maletti, Andreas (ed.). Algebraic Informatics. Lecture Notes in Computer Science. Vol. 9270. Cham: Springer International Publishing. pp. 1–21. doi:10.1007/978-3-319-23021-4_1. ISBN   978-3-319-23021-4.
  9. 1 2 Almagor, Shaull; Boker, Udi; Kupferman, Orna (2011). "What's Decidable about Weighted Automata?". In Bultan, Tevfik; Hsiung, Pao-Ann (eds.). Automated Technology for Verification and Analysis. Lecture Notes in Computer Science. Vol. 6996. Berlin, Heidelberg: Springer. pp. 482–491. doi:10.1007/978-3-642-24372-1_37. ISBN   978-3-642-24372-1. S2CID   10159261.
  10. Mohri, Mehryar (2009), Droste, Manfred; Kuich, Werner; Vogler, Heiko (eds.), "Weighted Automata Algorithms", Handbook of Weighted Automata, Monographs in Theoretical Computer Science. An EATCS Series, Berlin, Heidelberg: Springer, pp. 213–254, Bibcode:2009hwa..book..213M, doi:10.1007/978-3-642-01492-5_6, ISBN   978-3-642-01492-5 , retrieved 2021-11-11
  11. Droste, Manfred; Gastin, Paul (2007-06-21). "Weighted automata and weighted logics". Theoretical Computer Science. Automata, Languages and Programming. 380 (1): 69–86. doi: 10.1016/j.tcs.2007.02.055 . ISSN   0304-3975.