Wetware (biology)

Last updated

The term wetware is used to describe the protocols and molecular devices used in molecular biology and synthetic biology.

Molecular biology branch of biology that deals with the molecular basis of biological activity

Molecular biology is a branch of biology that concerns the molecular basis of biological activity between biomolecules in the various systems of a cell, including the interactions between DNA, RNA, proteins and their biosynthesis, as well as the regulation of these interactions. Writing in Nature in 1961, William Astbury described molecular biology as:

...not so much a technique as an approach, an approach from the viewpoint of the so-called basic sciences with the leading idea of searching below the large-scale manifestations of classical biology for the corresponding molecular plan. It is concerned particularly with the forms of biological molecules and [...] is predominantly three-dimensional and structural – which does not mean, however, that it is merely a refinement of morphology. It must at the same time inquire into genesis and function.

Synthetic biology interdisciplinary branch of biology and engineering

Synthetic biology is an interdisciplinary branch of biology and engineering.

Where biological components and systems are treated in a similar manner to software, and similar development models and methodologies are applied, the term 'wetware' can be used to imply an approach to their problems as 'bugs' and their beneficial aspects as 'features'. In this manner, genetic code can be subjected to Version Control Systems such as Git, for the development of improvements and new gene edits, therapeutic components and therapies.

Git Free and open source revision control software

Git is a distributed version-control system for tracking changes in source code during software development. It is designed for coordinating work among programmers, but it can be used to track changes in any set of files. Its goals include speed, data integrity, and support for distributed, non-linear workflows.

Examples

The National Science Foundation (NSF) funded Wiki project Open Wetware (OWW) provides a resource for reagent, project and laboratory notebook sharing. [1]

National Science Foundation United States government agency

The National Science Foundation (NSF) is a United States government agency that supports fundamental research and education in all the non-medical fields of science and engineering. Its medical counterpart is the National Institutes of Health. With an annual budget of about US$7.8 billion, the NSF funds approximately 24% of all federally supported basic research conducted by the United States' colleges and universities. In some fields, such as mathematics, computer science, economics, and the social sciences, the NSF is the major source of federal backing.

A somewhat related NSF consortium Synthetic Biology Engineering Research Center (SynBERC) constructs and distributes wetware. [2]

Related Research Articles

Analysis is the process of breaking a complex topic or substance into smaller parts in order to gain a better understanding of it. The technique has been applied in the study of mathematics and logic since before Aristotle, though analysis as a formal concept is a relatively recent development.

Macromolecule molecule of high relative molecular mass, the structure of which essentially comprises the multiple repetition of units derived, actually or conceptually, from molecules of low relative molecular mass

A macromolecule is a very large molecule, such as protein, commonly created by the polymerization of smaller subunits (monomers). They are typically composed of thousands of atoms or more. The most common macromolecules in biochemistry are biopolymers and large non-polymeric molecules. Synthetic macromolecules include common plastics and synthetic fibers as well as experimental materials such as carbon nanotubes.

Computational biology involves the development and application of data-analytical and theoretical methods, mathematical modeling and computational simulation techniques to the study of biological, ecological, behavioral, and social systems. The field is broadly defined and includes foundations in biology, applied mathematics, statistics, biochemistry, chemistry, biophysics, molecular biology, genetics, genomics, computer science and evolution.

Molecular genetics is the field of biology that studies the structure and function of genes at a molecular level and thus employs methods of both molecular biology and genetics. The study of chromosomes and gene expression of an organism can give insight into heredity, genetic variation, and mutations. This is useful in the study of developmental biology and in understanding and treating genetic diseases.

Systems biology computational and mathematical modeling of complex biological systems

Systems biology is the computational and mathematical modeling of complex biological systems. It is a biology-based interdisciplinary field of study that focuses on complex interactions within biological systems, using a holistic approach to biological research.

Synthetic oil lubricant consisting of chemical compounds that are artificially made

Synthetic oil is a lubricant consisting of chemical compounds that are artificially made. Synthetic lubricants can be manufactured using chemically modified petroleum components rather than whole crude oil, but can also be synthesized from other raw materials. The base material, however, is still overwhelmingly crude oil that is distilled and then modified physically and chemically. The actual synthesis process and composition of additives is generally a commercial trade secret and will vary among producers.

Wetware may refer to:

Nanorobotics

Nanorobotics are an emerging technology field creating machines or robots whose components are at or near the scale of a nanometer. More specifically, nanorobotics refers to the nanotechnology engineering discipline of designing and building nanorobots, with devices ranging in size from 0.1–10 micrometres and constructed of nanoscale or molecular components. The terms nanobot, nanoid, nanite, nanomachine, or nanomite have also been used to describe such devices currently under research and development.

Wetware computer organic computer

A wetware computer is an organic computer composed of organic material such as living neurons. Wetware computers composed of neurons are significantly different than conventional computers because they are thought to be capable in a way of "thinking for themselves", because of the dynamic nature of neurons. While wetware is still largely conceptual, there has been limited success with construction and prototyping, which has acted as a proof of the concept's realistic application to computing in the future. The most notable examples of prototyping have stemmed from the research completed by biological engineer William Ditto during his time at the Georgia Institute of Technology. His work constructing a simple neurocomputer capable of basic addition from leech neurons in 1999 was a significant discovery for the concept. This research acted as a primary example driving interest in the creation of these artificially constructed, but still organic brains.

Paul Rabinow American anthropologist

Paul Rabinow is Professor of Anthropology at the University of California (Berkeley), Director of the Anthropology of the Contemporary Research Collaboratory (ARC), and former Director of Human Practices for the Synthetic Biology Engineering Research Center (SynBERC). He is perhaps most famous for his widely influential commentary and expertise on the French philosopher Michel Foucault.

Phosphorylcholine is the hydrophilic polar head group of some phospholipids, which is composed of a negatively charged phosphate bonded to a small, positively charged choline group. Phosphorylcholine is part of platelet-activating factor; the phospholipid phosphatidylcholine as well as sphingomyelin, the only phospholipid of the membrane that is not built with a glycerol backbone. Treatment of cell membranes, like those of RBCs, by certain enzymes, like some phospholipase A2 renders the phosphorylcholine moiety exposed to the external aqueous phase, and thus accessible for recognition by the immune system. Antibodies against phosphorylcholine are naturally occurring autoantibodies that are created by CD5+/B-1 B cells and are referred to as non-pathogenic autoantibodies.

Biology is the natural science that studies life and living organisms, including their physical structure, chemical processes, molecular interactions, physiological mechanisms, development and evolution. Despite the complexity of the science, there are certain unifying concepts that consolidate it into a single, coherent field. Biology recognizes the cell as the basic unit of life, genes as the basic unit of heredity, and evolution as the engine that propels the creation and extinction of species. Living organisms are open systems that survive by transforming energy and decreasing their local entropy to maintain a stable and vital condition defined as homeostasis.

Bio computers use systems of biologically derived molecules—such as DNA and proteins—to perform computational calculations involving storing, retrieving, and processing data.

Mycoplasma laboratorium is a designed, partially synthetic species of bacterium derived from the genome of Mycoplasma genitalium. This effort in synthetic biology is being undertaken at the J. Craig Venter Institute by a team of approximately 20 scientists headed by Nobel laureate Hamilton Smith and including DNA researcher Craig Venter and microbiologist Clyde A. Hutchison III. Mycoplasma genitalium was chosen as it was the species with the smallest number of genes known at that time.

Wetware is a term drawn from the computer-related idea of hardware or software, but applied to biological life forms.

Gene Designer software for gene design

Gene Designer is a computer software package for bioinformatics. It is used by molecular biologists from academia, government, and the pharmaceutical, chemical, agricultural, and biotechnology industries to design, clone, and validate genetic sequences. It is proprietary software, released as freeware needing registration.

Wendell Lim Ph.D. is a Professor of Cellular and Molecular Pharmacology at University of California, San Francisco. He is the Director of the UCSF/UCB NIH Nanomedicine development center and director of the SynBERC. He earned his A.B. in Chemistry from Harvard University and his Ph.D in biochemistry and biophysics from Massachusetts Institute of Technology under the guidance of Bob Sauer. He then did his postdoctoral work with Frederic Richards at Yale University. During his postdoctoral work, he began to think about signal transduction and methods to evolve the module components of the proteins.

The term "biological computation" refers, variously, to any of the following:

Revolution Bioengineering is a biotech company in Fort Collins, Colorado, United States that is working to create a plant that changes color throughout the day on its own using synthetic biology techniques to harness genes involved in the color and internal clock systems in petunias. The company started as part of the inaugural class of Ireland-based SynBio Axlr8r, a three-month business accelerator program awarding $60,000 and mentoring to biotech start-ups using synthetic biology. One of the company's goals is to embrace the current GMO controversy and work to show capabilities of synthetic biology through their project.

References