Wheatstone system

Last updated

The Wheatstone system was an automated telegraph system that replaced a human operator with machines capable of sending and recording Morse code at a consistent fast rate. [1] The system included a perforator, which prepared punched paper tape called a Wheatstone slip, a transmitter that read the tape and converted the symbols into dots and dashes encoded as mark and space electric currents on the telegraph line, and a receiver at the other end of the telegraph line that printed the Morse symbols. [2] The system was invented by Charles Wheatstone. [2] Enhancements could be made so that it was a duplex system, able to send and receive on the same line simultaneously.

Wheatstone slip with a dot, space and a dash punched, and perforator punch plate EB1911 Telegraph - Wheatstone Punching Apparatus.jpg
Wheatstone slip with a dot, space and a dash punched, and perforator punch plate
inter-letter space
inter-word space
dot
dash

The Wheatstone slip was a paper tape that contained holes in a pattern to control the mark and space signals on the telegraph line. The paper tape was from 0.46 to 0.48 inches in width, (but the standard width is from 0.472 to 0.475 inches) and a standard thickness of 0.004 to 0.0045 inches. [3] Olive oil coating lubricated the punch process. [4] There were three rows of holes. The middle row forms a rack so that a star wheel can move the paper forward. Every used position on the tape has a middle hole punched. The top hole indicates when to turn on the mark signal on the line, and the bottom hole says to turn off the mark signal. Each vertical column represents a time interval in the Morse code, including the spacing between the holes. The holes are spaced 0.1 inches apart. A column of three holes turns on the mark at the beginning of the interval, and turns it off at the end making a dot. If there is a top hole without a bottom, and then the next column has a bottom without a top hole, mark is on for three intervals, and a dash is represented. If there is only a centre hole, then nothing changes, and this would normally be used to put in space between letters and words. [2]

Mallet or Wheatstone perforator internal diagram with cover removed Malletperforatorundercover.png
Mallet or Wheatstone perforator internal diagram with cover removed

The Wheatstone perforator was a development of Alexander Bain's 1848 manually operated hole punch machine for his "fast telegraph". [5] It produced Wheatstone slips using three buttons (or keys) labelled "A", "A1" and "A2". "A" punched the pattern for dot, "A1" punched the pattern for space, and "A2" punched the dash pattern in two columns. The keys were so difficult to press that fist-held rubber-tipped mallets were used to depress them and operate the punches. Using this, invalid combinations of holes could not be produced. The blank paper tape was fed in from the right over a roller and came out the left side. It was oriented in a vertical plane. [2] The paper punches were labelled with numbers: 1 for the top hole of the dot, 2 for the sprocket hole for dot, and 3 for the bottom hole for dot. When a dash was punched, extra hole punches to the right punched a centre hole with number 4 and a bottom hole with number 5. [2] The perforator was introduced in 1867. [6] It enabled transmission speeds on a telegraph line to increase to 70 words per minute. [6] The very first message ever punched onto a tape was "SOS EIOS". [7] The manual perforator was subsequently replaced by keyboard perforators like the Gell keyboard perforator or Kleinschmidt keyboard perforator.

Each of the keys had a spring to restore its position after pressing. Each key moved a corresponding lever underneath the instrument. The other end of the levers protruded up into the back of the mechanism. Each punch rod also had a spring to put it back in place after punching a hole. For space and dot keying (A or A1) the star wheel was only allowed to turn one position by a pawl, and the paper tape only moved forward one position. However, when key A2 was hit, the corresponding lever B2 raised a bar (h) which allowed another lever attached to the pawl to move further back when the star wheel rotated, and the wheel could turn two positions, for a dash. The distance the paper tape moved for each position was determined by how far lever k moved, and its range of movement had to be set by adjusting screws i and t. A flat spring g stored energy from the punch to move the paper. The force of the spring was determined by adjusting screws n and n'. A guide roller (r) with a groove was pressed by an adjustable spring to press the pawl against the star wheel. The star wheel was on a frame with a piece sticking out the left hand side as a lever. When the operator wanted to insert paper tape, this lever was pulled, and the star wheel retracted from the paper. [3]

Wheatstone automatic transmitter diagram EB1911 Telegraph - Wheatstone Automatic Transmitter.jpg
Wheatstone automatic transmitter diagram

The Wheatstone transmitter read a paper tape (Wheatstone slip) and converted the dot pattern into mark and space symbols on the telegraph line. It worked by two rods alternately rising up to sample the holes in the tape. First of all the top hole was probed, and if the rod could go through, it moved a compound lever that connected the mark signal to the line. With no hole the lever remained unmoved. Next the top hole rod dropped and the bottom hole rod checked whether there was a bottom hole in the tape. If there was, the compound lever was moved back to connect the space signal on the line. If there was no hole, the compound lever was left alone as it was. An extra switch enabled the transmitter to be bypassed so that a Morse key could be used instead. [8]

The Wheatstone receiver converted the signal on the telegraph line to an inked pattern on a paper strip. An electromagnet electrically connected to the telegraph line moved an inking wheel to press against the paper. A clockwork mechanism advanced the paper tape, and turned the inking wheel, and an ink supply wheel. The paper advance speed could be adjusted between 7 and 60 feet per minute. Power to the clockwork had three sources: it could be a coiled spring, a weight, or an electric motor. Paper spools were stored in drawers beneath the reader to allow quick change when one was exhausted. The ink supply wheel turned in an inkwell. The machine was started and stopped by use of a lever. In electrical characteristics, the electromagnet had two windings, each of 100 ohms resistance. These could be connected in parallel or series to achieve a 50 or 200 ohm resistance, to better match the telegraph line. Other maintenance that might have been required was cleaning of the marker and supply wheels, adjusting the armature-coil spacing to avoid a marking or spacing bias, and cleaning the sounding tongue and contact points. [9]

The Wheatstone telegram consisted of strips of paper tape with the Morse code printed on it, pasted on a form. The telegram would later be retyped to make a final presentable message for the recipient. [4]

Alphabet, numbers and symbols

A ⠇⠳⠂ B ⠳⠇⠇⠇⠂ C ⠳⠇⠳⠇⠂ D ⠳⠇⠇⠂ E ⠇⠂ F ⠇⠇⠳⠇⠂ G ⠳⠳⠇⠂ H ⠇⠇⠇⠇⠂ I ⠇⠇⠂ J ⠇⠳⠳⠳⠂ K ⠳⠇⠳⠂ L ⠇⠳⠇⠇⠂ M ⠳⠳⠂ N ⠳⠇⠂ O ⠳⠳⠳⠂ P ⠇⠳⠳⠇⠂ Q ⠳⠳⠇⠳⠂ R ⠇⠳⠇⠂ S ⠇⠇⠇⠂ T ⠳⠂ U ⠇⠇⠳⠂ V ⠇⠇⠇⠳⠂ W ⠇⠳⠳⠂ X ⠳⠇⠇⠳⠂ Y ⠳⠇⠳⠳⠂ Z ⠳⠳⠇⠇⠂
1 ⠇⠳⠳⠳⠳⠂ 2 ⠇⠇⠳⠳⠳⠂ 3 ⠇⠇⠇⠳⠳⠂ 4 ⠇⠇⠇⠇⠳⠂ 5 ⠇⠇⠇⠇⠇⠂ 6 ⠳⠇⠇⠇⠇⠂ 7 ⠳⠳⠇⠇⠇⠂ 8 ⠳⠳⠳⠇⠇⠂ 9 ⠳⠳⠳⠳⠇⠂ 0 ⠳⠳⠳⠳⠳⠂ \ ⠇⠳⠇⠇⠳⠂ / ⠳⠇⠇⠳⠇⠂ ? ⠇⠇⠳⠳⠇⠇⠂ = ⠳⠇⠇⠇⠳⠂ [10] [11]

Related Research Articles

<span class="mw-page-title-main">Baudot code</span> Pioneering five-bit character encodings

The Baudot code[boˈdo] is an early character encoding for telegraphy invented by Émile Baudot in the 1870s. It was the predecessor to the International Telegraph Alphabet No. 2 (ITA2), the most common teleprinter code in use until the advent of ASCII. Each character in the alphabet is represented by a series of five bits, sent over a communication channel such as a telegraph wire or a radio signal by asynchronous serial communication. The symbol rate measurement is known as baud, and is derived from the same name.

<span class="mw-page-title-main">Electrical telegraph</span> Early system for transmitting text over wires

Electrical telegraphs were point-to-point text messaging systems, primarily used from the 1840s until the late 20th century. It was the first electrical telecommunications system and the most widely used of a number of early messaging systems called telegraphs, that were devised to communicate text messages quicker than physical transportation. Electrical telegraphy can be considered to be the first example of electrical engineering.

<span class="mw-page-title-main">Morse code</span> Transmission of language with brief pulses

Morse code is a method used in telecommunication to encode text characters as standardized sequences of two different signal durations, called dots and dashes, or dits and dahs. Morse code is named after Samuel Morse, one of the inventors of the telegraph.

<span class="mw-page-title-main">Teleprinter</span> Device for transmitting messages in written form by electrical signals

A teleprinter is an electromechanical device that can be used to send and receive typed messages through various communications channels, in both point-to-point and point-to-multipoint configurations. Initially they were used in telegraphy, which developed in the late 1830s and 1840s as the first use of electrical engineering, though teleprinters were not used for telegraphy until 1887 at the earliest. The machines were adapted to provide a user interface to early mainframe computers and minicomputers, sending typed data to the computer and printing the response. Some models could also be used to create punched tape for data storage and to read back such tape for local printing or transmission.

<span class="mw-page-title-main">Punched tape</span> Form of data storage

Punched tape or perforated paper tape is a form of data storage that consists of a long strip of paper in which holes are punched. It developed from and was subsequently used alongside punched cards, differing in that the tape is continuous.

<span class="mw-page-title-main">Dot matrix printing</span> Computer printing process

Dot matrix printing, sometimes called impact matrix printing, is a computer printing process in which ink is applied to a surface using a relatively low-resolution dot matrix for layout. Dot matrix printers typically use a print head that moves back and forth or in an up-and-down motion on the page and prints by impact, striking an ink-soaked cloth ribbon against the paper, much like the print mechanism on a typewriter or line printer. However, a dot matrix printer is able to print arbitrary patterns and not just specific characters.

<span class="mw-page-title-main">Linotype machine</span> Printing machine used in hot type

The Linotype machine is a "line casting" machine used in printing; manufactured and sold by the former Mergenthaler Linotype Company and related companies. It was a hot metal typesetting system that cast lines of metal type for individual uses. Linotype became one of the mainstay methods to set type, especially small-size body text, for newspapers, magazines, and posters from the late 19th century to the 1970s and 1980s, when it was largely replaced by phototypesetting and digital typesetting. The name of the machine comes from the fact that it produces an entire line of metal type at once, hence a line-o'-type. It was a significant improvement over the previous industry standard of manual, letter-by-letter typesetting using a composing stick and shallow subdivided trays, called "cases".

<span class="mw-page-title-main">Perforation</span> (Making) a small hole in a thin material

A perforation is a small hole in a thin material or web. There is usually more than one perforation in an organized fashion, where all of the holes collectively are called a perforation. The process of creating perforations is called perforating, which involves puncturing the workpiece with a tool.

A telegraph code is one of the character encodings used to transmit information by telegraphy. Morse code is the best-known such code. Telegraphy usually refers to the electrical telegraph, but telegraph systems using the optical telegraph were in use before that. A code consists of a number of code points, each corresponding to a letter of the alphabet, a numeral, or some other character. In codes intended for machines rather than humans, code points for control characters, such as carriage return, are required to control the operation of the mechanism. Each code point is made up of a number of elements arranged in a unique way for that character. There are usually two types of element, but more element types were employed in some codes not intended for machines. For instance, American Morse code had about five elements, rather than the two of International Morse Code.

<span class="mw-page-title-main">Friden Flexowriter</span> Teleprinter

The Friden Flexowriter produced by the Friden Calculating Machine Company, was a teleprinter, a heavy-duty electric typewriter capable of being driven not only by a human typing, but also automatically by several methods, including direct attachment to a computer and by use of paper tape.

<span class="mw-page-title-main">Alexander Bain (inventor)</span> Scottish inventor and engineer (1810–1877)

Alexander Bain was a Scottish inventor and engineer who was first to invent and patent the electric clock. He invented the Telegraph Clock, which was a technology of synchronizing many electric clocks placed anywhere in the world; they would all have the exact same time. He also invented and patented the technology of the facsimile machine for scanning images and transmitting them across telegraph lines hundreds of miles away.

<span class="mw-page-title-main">Teletype Model 33</span> 1963–1981 ASCII communications/computer terminal device

The Teletype Model 33 is an electromechanical teleprinter designed for light-duty office use. It is less rugged and cost less than earlier Teletype machines. The Teletype Corporation introduced the Model 33 as a commercial product in 1963; the machine had originally been designed for the United States Navy. There are three versions of the Model 33:

Frederick George Creed was a Canadian inventor, who spent most of his adult life in Britain. He worked in the field of telecommunications, and is particularly remembered as a key figure in the development of the teleprinter. He also played an early role in the development of SWATH vessels.

<span class="mw-page-title-main">Syphon recorder</span> Device used to inscribe telegrams

The syphon or siphon recorder is an obsolete electromechanical device used as a receiver for submarine telegraph cables invented by William Thomson, 1st Baron Kelvin in 1867. It automatically records an incoming telegraph message as a wiggling ink line on a roll of paper tape. Later a trained telegrapher would read the tape, translating the pulses representing the "dots" and "dashes" of the Morse code to characters of the text message.

<span class="mw-page-title-main">American Morse code</span> Morse code variant used on landline telegraph systems in the U.S.

American Morse Code — also known as Railroad Morse—is the latter-day name for the original version of the Morse Code developed in the mid-1840s, by Samuel Morse and Alfred Vail for their electric telegraph. The "American" qualifier was added because, after most of the rest of the world adopted "International Morse Code," the companies that continued to use the original Morse Code were mainly located in the United States. American Morse is now nearly extinct—it is most frequently seen in American railroad museums and American Civil War reenactments—and "Morse Code" today virtually always means the International Morse which supplanted American Morse.

Edward Ernst Kleinschmidt was one of the inventors of the teleprinter, and was a prolific inventor who obtained 118 patents in the course of his 101-year life.

<span class="mw-page-title-main">Monotype system</span> Typesetting system

The Monotype system is a system for printing by hot-metal typesetting from a keyboard. The two most significant differences from the competing Linotype machine are:

Cryptanalysis of the Lorenz cipher was the process that enabled the British to read high-level German army messages during World War II. The British Government Code and Cypher School (GC&CS) at Bletchley Park decrypted many communications between the Oberkommando der Wehrmacht in Berlin and their army commands throughout occupied Europe, some of which were signed "Adolf Hitler, Führer". These were intercepted non-Morse radio transmissions that had been enciphered by the Lorenz SZ teleprinter rotor stream cipher attachments. Decrypts of this traffic became an important source of "Ultra" intelligence, which contributed significantly to Allied victory.

The Teletype Model 28 is a product line of page printers, typing and non-typing tape perforator and tape reperforators, fixed head single contact and pivoted head multi-contact transmitter-distributors, and receiving selector equipment. Regarded as the most rugged machines Teletype Corporation built, this line of teleprinters used an exchangeable type box for printing and sequential selector "Stunt Box" to mechanically initiate non-printing functions within the typing unit of the page printer, electrically control functions within the page printer and electrically control external equipment.

<span class="mw-page-title-main">Kleinschmidt keyboard perforator</span>

The Kleinschmidt keyboard perforator is a telegraph instrument invented by Edward Kleinschmidt which prepares punched tape for telegraph transmission. A QWERTY keyboard operate hole punches that prepare a Wheatstone slip. Each Morse code of the dots and dashes for the letter is selected by projecting tongues on the key bar. The centre holes used for the paper feed are punched first, then the lower holes, and then the upper holes. The upper holes are the mark holes, which indicate when the symbol starts, and the lower hole tell when to terminate the symbol. This keyboard can be operated at up to 80 words a minute by a skilled operator.

References

  1. The British Quarterly Review. Vol. 59. 1874. p. 243.
  2. 1 2 3 4 5 Engineer-in-Chief's Office (November 1934). Wheatstone System Morse Keyboard Perforators (PDF). Technical Pamphlets for Workmen. pp. 3–5. Retrieved 26 March 2018.
  3. 1 2 McNicol, Donald (1913). American Telegraph Practice. New York: McGraw Hill Book Company. pp. 402–406.
  4. 1 2 McMullen, Ron (2016). "Machine Telegraphy Systems Used in Australia" (PDF). pp. 1–3. Retrieved 26 March 2018.
  5. Roberts, Steven. "3. Cooke and Wheatstone". Distant Writing: A History of the Telegraph Companies in Britain between 1838 and 1868.
  6. 1 2 Adler, Michael H. (1973). The Writing Machine. Rowman & Littlefield Publishers, Incorporated. p. 224. ISBN   9780874715668.
  7. Hallas, Sam; Hobbs, Allan G. (2014). "Short History of Telegraphy - Part 2". www.samhallas.co.uk.
  8. Engineer-in-Chief's Office (November 1934). Wheatstone System Morse Keyboard Perforators (PDF). Technical Pamphlets for Workmen. pp. 5–8. Retrieved 26 March 2018.
  9. Engineer-in-Chief's Office (November 1934). Wheatstone System Morse Keyboard Perforators (PDF). Technical Pamphlets for Workmen. pp. 8–10. Retrieved 26 March 2018.
  10. "Wheatstone tape message with translation - Japanese surrender". via Navy Automated Morse Code (CW) Equipment
  11. "Teletype bulletin 1025" (PDF). via Navy Automated Morse Code (CW) Equipment