Ratchet (device)

Last updated
Animation of ratchet gear (green) and pawl (pink).

Red arrows indicate which way force is applied to the gear. Ratchet Gear and Pawl.gif
Animation of ratchet gear (green) and pawl (pink).

Red arrows indicate which way force is applied to the gear.
A ratchet featuring a gear (1) and pawl (2) mounted on a base (3) Ratchet Drawing.svg
A ratchet featuring a gear (1) and pawl (2) mounted on a base (3)
Animation of ratchet gear rack (green) and pawl (pink).

Red arrows indicate which way force is applied to the gear rack. The rack and pawl are both restricted to only linear movement (not shown). Ratchet Rack and Pawl.gif
Animation of ratchet gear rack (green) and pawl (pink).

Red arrows indicate which way force is applied to the gear rack. The rack and pawl are both restricted to only linear movement (not shown).

A ratchet (occasionally spelled rachet) is a mechanical device that allows continuous linear or rotary motion in only one direction while preventing motion in the opposite direction. Ratchets are widely used in machinery and tools. The word ratchet is also used informally to refer to a ratcheting socket wrench.

Contents

Theory of operation

A ratchet consists of a round gear or a linear rack with teeth, and a pivoting, spring-loaded finger called a pawl (or click, in clocks and watches [1] [2] ) that engages the teeth. The teeth are uniform but are usually asymmetrical, with each tooth having a moderate slope on one edge and a much steeper slope on the other edge.

When the teeth are moving in the unrestricted (i.e. forward) direction, the pawl easily slides up and over the gently sloped edges of the teeth, with a spring forcing it (often with an audible 'click') into the depression between the teeth as it passes the tip of each tooth. When the teeth move in the opposite (backward) direction, however, the pawl will catch against the steeply sloped edge of the first tooth it encounters, thereby locking it against the tooth and preventing any further motion in that direction.

Backlash

Because the ratchet can only stop backward motion at discrete points (i.e., at tooth boundaries), a ratchet does allow a limited amount of backward motion. This backward motion—which is limited to a maximum distance equal to the spacing between the teeth—is called backlash. In cases where backlash must be minimized, a smooth, toothless ratchet with a high friction surface such as rubber is sometimes used. The pawl bears against the surface at an angle so that any backward motion will cause the pawl to jam against the surface and thus prevent any further backward motion. Since the backward travel distance is primarily a function of the compressibility of the high friction surface, this mechanism can result in significantly reduced backlash.

Uses

Ratchet mechanisms are used in a wide variety of applications, including these:

See also

Related Research Articles

<span class="mw-page-title-main">Clutch</span> Mechanical device that connects and disconnects two rotating shafts or other moving parts

A clutch is a mechanical device that allows the output shaft to be disconnected from the rotating input shaft. The clutch's input shaft is typically attached to a motor, while the clutch's output shaft is connected to the mechanism that does the work.

<span class="mw-page-title-main">Gear</span> Rotating circular machine part with teeth that mesh with another toothed part

A gear is a rotating circular machine part having cut teeth or, in the case of a cogwheel or gearwheel, inserted teeth, which mesh with another (compatible) toothed part to transmit rotational power. While doing so, they can change the torque and rotational speed being transmitted and also change the rotational axis of the power being transmitted. The teeth on the two meshing gears all have the same shape.

<span class="mw-page-title-main">Brownian ratchet</span> Perpetual motion device

In the philosophy of thermal and statistical physics, the Brownian ratchet or Feynman–Smoluchowski ratchet is an apparent perpetual motion machine of the second kind, first analysed in 1912 as a thought experiment by Polish physicist Marian Smoluchowski. It was popularised by American Nobel laureate physicist Richard Feynman in a physics lecture at the California Institute of Technology on May 11, 1962, during his Messenger Lectures series The Character of Physical Law in Cornell University in 1964 and in his text The Feynman Lectures on Physics as an illustration of the laws of thermodynamics. The simple machine, consisting of a tiny paddle wheel and a ratchet, appears to be an example of a Maxwell's demon, able to extract mechanical work from random fluctuations (heat) in a system at thermal equilibrium, in violation of the second law of thermodynamics. Detailed analysis by Feynman and others showed why it cannot actually do this.

<span class="mw-page-title-main">Escapement</span> Mechanism for regulating the speed of clocks

An escapement is a mechanical linkage in mechanical watches and clocks that gives impulses to the timekeeping element and periodically releases the gear train to move forward, advancing the clock's hands. The impulse action transfers energy to the clock's timekeeping element to replace the energy lost to friction during its cycle and keep the timekeeper oscillating. The escapement is driven by force from a coiled spring or a suspended weight, transmitted through the timepiece's gear train. Each swing of the pendulum or balance wheel releases a tooth of the escapement's escape wheel, allowing the clock's gear train to advance or "escape" by a fixed amount. This regular periodic advancement moves the clock's hands forward at a steady rate. At the same time, the tooth gives the timekeeping element a push, before another tooth catches on the escapement's pallet, returning the escapement to its "locked" state. The sudden stopping of the escapement's tooth is what generates the characteristic "ticking" sound heard in operating mechanical clocks and watches.

<span class="mw-page-title-main">Freewheel</span> Mechanism which disconnects a driveshaft from a faster-rotating driven shaft

In mechanical or automotive engineering, a freewheel or overrunning clutch is a device in a transmission that disengages the driveshaft from the driven shaft when the driven shaft rotates faster than the driveshaft. An overdrive is sometimes mistakenly called a freewheel, but is otherwise unrelated.

<span class="mw-page-title-main">Mainspring</span> Spiral torsion spring of metal ribbon used as a power source in mechanical watches and clocks

A mainspring is a spiral torsion spring of metal ribbon—commonly spring steel—used as a power source in mechanical watches, some clocks, and other clockwork mechanisms. Winding the timepiece, by turning a knob or key, stores energy in the mainspring by twisting the spiral tighter. The force of the mainspring then turns the clock's wheels as it unwinds, until the next winding is needed. The adjectives wind-up and spring-powered refer to mechanisms powered by mainsprings, which also include kitchen timers, metronomes, music boxes, wind-up toys and clockwork radios.

<span class="mw-page-title-main">Anchor escapement</span> Type of mechanism used in pendulum clocks

In horology, the anchor escapement is a type of escapement used in pendulum clocks. The escapement is a mechanism in a mechanical clock that maintains the swing of the pendulum by giving it a small push each swing, and allows the clock's wheels to advance a fixed amount with each swing, moving the clock's hands forward. The anchor escapement was so named because one of its principal parts is shaped vaguely like a ship's anchor.

<span class="mw-page-title-main">Socket wrench</span> Lever with interchangeable socket heads to grip or turn a bolt or nut

A socket wrench is a type of spanner that uses a closed socket format, rather than a typical open wrench/spanner to turn a fastener, typically in the form of a nut or bolt.

<span class="mw-page-title-main">Cable tie</span> Ratcheting fastener for electrical cable

A cable tie is a type of fastener for holding items together, primarily electrical cables and wires. Because of their low cost, ease of use, and binding strength, cable ties are ubiquitous, finding use in a wide range of other applications. Cable ties were first manufactured by Thomas & Betts under the brand name Ty-Rap.

<span class="mw-page-title-main">Sprag clutch</span> One-way mechanical transmission device

A sprag clutch is a one-way freewheel clutch. It resembles a roller bearing but, instead of cylindrical rollers, non-revolving asymmetric figure-eight shaped sprags, or other elements allowing single direction rotation, are used. When the unit rotates in one direction the rollers slip or free-wheel, but when a torque is applied in the opposite direction, the sprags tilt slightly, producing a wedging action and binding because of friction.

<span class="mw-page-title-main">Cogset</span> Set of sprockets attached to the rear wheel hub of a bicycle

On a bicycle, the cassette or cluster is the set of multiple sprockets that attaches to the hub on the rear wheel. A cogset works with a rear derailleur to provide multiple gear ratios to the rider. Cassettes come in two varieties, freewheels or cassettes, of which cassettes are a newer development. Although cassettes and freewheels perform the same function and look almost the same when installed, they have important mechanical differences and are not interchangeable.

In horology, a maintaining power is a mechanism for keeping a clock or watch going while it is being wound.

<span class="mw-page-title-main">Impact wrench</span> Socket wrench power tool

An impact wrench is a socket wrench power tool designed to deliver high torque output with minimal exertion by the user, by storing energy in a rotating mass, then delivering it suddenly to the output shaft. It was invented by Robert H. Pott of Evansville, Indiana.

A breaker bar is a long non-ratcheting bar that is used with socket wrench-style sockets. They are used to break loose very tight fasteners because their additional length allows the same amount of force to generate significantly more torque than a standard length socket wrench. Their use prevents damage to the ratcheting mechanism of a socket wrench. Often, after the first half turn, the fastener is loose enough to be turned with a socket wrench.

<span class="mw-page-title-main">Backlash (engineering)</span> Clearance between mating components

In mechanical engineering, backlash, sometimes called lash, play, or slop, is a clearance or lost motion in a mechanism caused by gaps between the parts. It can be defined as "the maximum distance or angle through which any part of a mechanical system may be moved in one direction without applying appreciable force or motion to the next part in mechanical sequence."p. 1-8 An example, in the context of gears and gear trains, is the amount of clearance between mated gear teeth. It can be seen when the direction of movement is reversed and the slack or lost motion is taken up before the reversal of motion is complete. It can be heard from the railway couplings when a train reverses direction. Another example is in a valve train with mechanical tappets, where a certain range of lash is necessary for the valves to work properly.

<span class="mw-page-title-main">Mechanical watch</span> Type of watch which uses a clockwork mechanism to measure the passage of time

A mechanical watch is a watch that uses a clockwork mechanism to measure the passage of time, as opposed to quartz watches which function using the vibration modes of a piezoelectric quartz tuning fork, or radio watches, which are quartz watches synchronized to an atomic clock via radio waves. A mechanical watch is driven by a mainspring which must be wound either periodically by hand or via a self-winding mechanism. Its force is transmitted through a series of gears to power the balance wheel, a weighted wheel which oscillates back and forth at a constant rate. A device called an escapement releases the watch's wheels to move forward a small amount with each swing of the balance wheel, moving the watch's hands forward at a constant rate. The escapement is what makes the 'ticking' sound which is heard in an operating mechanical watch. Mechanical watches evolved in Europe in the 17th century from spring powered clocks, which appeared in the 15th century.

In engineering, a dog is a tool or part of a tool, such as a pawl, that prevents or imparts movement through physical engagement. It may hold another object in place by blocking it, clamping it, or otherwise obstructing its movement. Or it may couple various parts together so that they move in unison – the primary example of this being a flexible drive to mate two shafts in order to transmit torque. Some devices use dog clutches to lock together two spinning components. In a manual transmission, the dog clutches, or "dogs" lock the selected gear to the shaft it rotates on. Unless the dog is engaged, the gear will simply freewheel on the shaft.

In horology, a wheel train is the gear train of a mechanical watch or clock. Although the term is used for other types of gear trains, the long history of mechanical timepieces has created a traditional terminology for their gear trains which is not used in other applications of gears.

<span class="mw-page-title-main">New Britain Machine Company</span> Former tool company in Connecticut, USA

New Britain Machine Company was a tool company that was headquartered in New Britain, Connecticut. The company started to sell sockets and drive tools. New Britain was the main supplier for NAPA tools until its closure in 1990. New Britain Machine owned Husky and Blackhawk tools as well as making its own economy-grade tools under the None Better and Mustang names. New Britain Machine was then acquired by the Litton Tool Company on December 22, 1972.

<span class="mw-page-title-main">Pawl</span> Mechanical device to restrict movement

A pawl is a movable lever that engages a fixed component to either prevent movement in one direction or restrain it altogether. As such, it is a type of latch and can also be considered a type of dog. It typically consists of a spring-loaded lever that engages a mating component at a steep enough angle to restrain it. Pawls are often tapered, being widened at their pivot for anchoring and narrow at their tip.

References

  1. hautehorlogerie.org
  2. "Know your terminology – Clocks". Hints and Tips. British Horological Institute. Archived from the original on 2008-06-07. Retrieved 2008-05-15.