Wilhelm Barthlott

Last updated
Wilhelm Barthlott Wilhelm Barthlott.jpg
Wilhelm Barthlott

Wilhelm Barthlott (born 1946 in Forst, Germany) is a German botanist and biomimetic materials scientist. His official botanical author citation is Barthlott.

Contents

Barthlott's areas of specialization are biodiversity (global distribution, assessment, and change in biodiversity) and bionics/biomimetics (in particular, superhydrophobic biological surfaces and their technical applications).

He is one of the pioneers in the field of biological and technical interfaces. Based on his systematic research on plant surfaces, he discovered the self-cleaning (lotus effect) [1] biological surfaces and developed superhydrophobic technical surfaces for different applications (e.g. Salvinia effect and oil-water-separation). The Bartlott Effects [2] led to a paradigm shift and disruptive technologies in material science and facilitated the development of superhydrophobic biomimetic surfaces. His map of the global biodiversity distribution is the foundation for numerous research topics. Barthlott has been honored with many awards (e. g. the German Environmental Prize) and memberships in academies (e. g. the German National Academy of Sciences Leopoldina). A large red-flowering tropical shrub, Barthlottia madagascariensis , and other plants are named after him.

Career

Barthlott descends from a French Huguenot family, which arrived with Jacques Barthelot in 1698 on the territory of the Maulbronn Monastery in Germany, where his mother's family houses had existed before 1500. Wilhelm Barthlott studied biology, physics, chemistry, and geography at the University of Heidelberg, Germany. He earned his doctorate in 1973 with a dissertation supervised by Werner Rauh on systematics and biogeography of cacti investigated by means of scanning electron microscopy. He held a professorship at the Free University of Berlin at the Institute for Systematic Botany and Plant Geography from 1982 to 1985. In 1985 he became the chair of systematic botany at the Botanical Institute of the University of Bonn and also the director of the Botanical Garden. In 2003 he established the Nees Institute for Biodiversity of Plants as founding director. He was influential in the reorganization and expansion of both institutions.

Barthlott took emeritus status in 2011, and continued as the head of a long-running research project Biodiversität im Wandel (Biodiversity in Change). He is investigating biological and technical superhydrophobic interfaces within the scope of his research projects in biomimetics.

Barthlott published one of the most cited papers plant science [3] and materials science. [4] His work in materials science based on superhydrophobic lotus effect surfaces "can be considered the most famous inspiration from nature ... and has been widely applied ... in our daily life and industrial productions". [5]

Fields of work

Botanical Research

Barthlott has done extensive research focusing on Andean South America and Africa, in particular, on the taxonomy and morphology of cacti, orchids, bromeliads and the Titan Arum, [6] applying scanning electron microscopy and molecular methods. Barthlott's studies on carnivorous plants converged systematic and ecological research. These studies led to the discovery of the first protozoan trapping plant in the genus Genlisea . [7] This plants also exhibit one of the highest evolutionary rates and has the smallest known genome among all flowering plants. [8] The naming of Genlisea barthlottii pays tribute to his investigation in this regard. The shrub Barthlottia madagascariensis or the miniature titan arum ( Amorphophallus barthlottii ) and further species were named after him. Among his discoveries are the giant bromeliad Gregbrownia lyman-smithii and epiphytic cacti such as Rhipsalis juengeri, Pfeiffera miyagawae and Schlumbergera orssichiana or the succulent Peperomia graveolens . A complete list of plants can be found on the International Plant Names Index (IPNI) or in Plants of the World Online (POWO).

His biogeographic-ecological work was mostly conducted in South America, West Africa and Madagascar concentrating on arid regions, [9] epiphytes in tropical forest canopy, [10] as well as tropical inselbergs. [11] Additional works concentrated on the global mapping of biodiversity [12] and its macroecological dependencies on climate change [13] and other abiotic factors (Geodiversity), [14] including migration and globalization. [15] His Biodiversity Distribution Map has been published in numerous textbooks and has been the foundation for many postgraduate studies. In the framework of the BMBF-BIOTA-AFRICA [16] project, which was co-founded by him, the biodiversity patterns in Africa as a model continent were analyzed and potential impacts of climate change are investigated.

Bionics, biomimetics and materials science

Barthlott was the first botanist using high resolution scanning electron microscopy systematically in the research of biological surfaces since 1970. Most prominent among his results was the discovery of the self-cleaning effect of superhydrophobic micro- and nanostructured surfaces, [17] [18] [19] which were technically realized with the trademark "Lotus Effect" from 1998 on, [20] and resulting products distributed worldwide. [21] [22] The patents and the trademark Lotus Effect [23] are owned by the company Sto-AG. Today about 2000 publications per year are based on his discovery, while the physics behind self-cleaning surfaces is still not completely understood. [24]

Currently, the research on biological interfaces and bionics is Barthlott's central area of interest. [25] [26] [27] He provided the first evidence that superhydrophobicity evolved probably as a "key innovation" for the land transition of life already in Precambrian cyanobacteria a billion years ago. [28] Ongoing research areas include air-retaining surfaces on the model of the floating fern Salvinia , which is based on a complex physical principle (Salvinia effect). Technical application of this effect is conceivable in shipping: By means of a reduction in frictional resistance ("passive air lubrication"), a 10% decrease in fuel consumption could potentially be achieved. [29] Another application is the oil-water-separation by adsorption and transportation of oil on air retaining surfaces. [30] [31] Barthlott very early warned that the addition of surfactants within the global application of pesticides in agriculture disrupts the pathogen defense of crops and should be reduced [32]

Honors and awards

Publications

Barthlott's publications comprise more than 480 titles, including many books. List in Google Scholar and World Library Catalogue

Selected works

Related Research Articles

<span class="mw-page-title-main">Hydrophobe</span> Molecule or surface that has no attraction to water

In chemistry, hydrophobicity is the physical property of a molecule that is seemingly repelled from a mass of water. In contrast, hydrophiles are attracted to water.

<span class="mw-page-title-main">Biodiversity</span> Variety and variability of life forms

Biodiversity is the variety and variability of life on Earth. It can be measured on various levels. There is for example genetic variability, species diversity, ecosystem diversity and phylogenetic diversity. Diversity is not distributed evenly on Earth. It is greater in the tropics as a result of the warm climate and high primary productivity in the region near the equator. Tropical forest ecosystems cover less than one-fifth of Earth's terrestrial area and contain about 50% of the world's species. There are latitudinal gradients in species diversity for both marine and terrestrial taxa.

<span class="mw-page-title-main">Biomimetics</span> Imitation of biological systems for the solving of human problems

Biomimetics or biomimicry is the emulation of the models, systems, and elements of nature for the purpose of solving complex human problems. The terms "biomimetics" and "biomimicry" are derived from Ancient Greek: βίος (bios), life, and μίμησις (mīmēsis), imitation, from μιμεῖσθαι (mīmeisthai), to imitate, from μῖμος (mimos), actor. A closely related field is bionics.

<i>Salvinia</i> Genus of aquatic plants

Salvinia, a genus in the family Salviniaceae, is a floating fern named in honor of Anton Maria Salvini, a 17th-century Italian scientist. Watermoss is a common name for Salvinia. The genus was published in 1754 by Jean-François Séguier, in his description of the plants found round Verona, Plantae Veronenses Twelve species are recognized, at least three of which are believed to be hybrids, in part because their sporangia are found to be empty.

<span class="mw-page-title-main">Bionics</span> Application of natural systems to technology

Bionics or biologically inspired engineering is the application of biological methods and systems found in nature to the study and design engineering systems and modern technology.

<i>Nelumbo</i> Genus of aquatic flowering plants known as "lotus."

Nelumbo is a genus of aquatic plants with large, showy flowers. Members are commonly called lotus, though the name is also applied to various other plants and plant groups, including the unrelated genus Lotus. Members outwardly resemble those in the family Nymphaeaceae, but Nelumbo is actually very distant from that family.

<span class="mw-page-title-main">Lotus effect</span> Self-cleaning properties

The lotus effect refers to self-cleaning properties that are a result of ultrahydrophobicity as exhibited by the leaves of Nelumbo, the lotus flower. Dirt particles are picked up by water droplets due to the micro- and nanoscopic architecture on the surface, which minimizes the droplet's adhesion to that surface. Ultrahydrophobicity and self-cleaning properties are also found in other plants, such as Tropaeolum (nasturtium), Opuntia, Alchemilla, cane, and also on the wings of certain insects.

<span class="mw-page-title-main">Ultrahydrophobicity</span> Material property of extreme resistance to wetting

In chemistry and materials science, ultrahydrophobic surfaces are highly hydrophobic, i.e., extremely difficult to wet. The contact angles of a water droplet on an ultrahydrophobic material exceed 150°. This is also referred to as the lotus effect, after the superhydrophobic leaves of the lotus plant. A droplet striking these kinds of surfaces can fully rebound like an elastic ball. Interactions of bouncing drops can be further reduced using special superhydrophobic surfaces that promote symmetry breaking, pancake bouncing or waterbowl bouncing.

Epicuticular wax is a waxy coating which covers the outer surface of the plant cuticle in land plants. It may form a whitish film or bloom on leaves, fruits and other plant organs. Chemically, it consists of hydrophobic organic compounds, mainly straight-chain aliphatic hydrocarbons with or without a variety of substituted functional groups. The main functions of the epicuticular wax are to decrease surface wetting and moisture loss. Other functions include reflection of ultraviolet light, assisting in the formation of an ultra-hydrophobic and self-cleaning surface and acting as an anti-climb surface.

<span class="mw-page-title-main">Plant cuticle</span> Waterproof covering of aerial plant organs

A plant cuticle is a protecting film covering the outermost skin layer (epidermis) of leaves, young shoots and other aerial plant organs that have no periderm. The film consists of lipid and hydrocarbon polymers infused with wax, and is synthesized exclusively by the epidermal cells.

Biomimetic materials are materials developed using inspiration from nature. This may be useful in the design of composite materials. Natural structures have inspired and innovated human creations. Notable examples of these natural structures include: honeycomb structure of the beehive, strength of spider silks, bird flight mechanics, and shark skin water repellency. The etymological roots of the neologism "biomimetic" derive from Greek, since bios means "life" and mimetikos means "imitative".

<span class="mw-page-title-main">Red List Index</span> Conservation status indicator

The Red List Index (RLI), based on the IUCN Red List of Threatened Species, is an indicator of the changing state of global biodiversity. It defines the conservation status of major species groups, and measures trends in extinction risk over time. By conducting conservation assessments at regular intervals, changes in the threat status of species in a taxonomic group can be used to monitor trends in extinction risk. RLIs have been calculated for birds and amphibians, using changes in threat status for species in each of the groups.

<span class="mw-page-title-main">Effects of climate change on plant biodiversity</span>

There is an ongoing decline in plant biodiversity, just like there is ongoing biodiversity loss for many other life forms. One of the causes for this decline is climate change. Environmental conditions play a key role in defining the function and geographic distributions of plants. Therefore, when environmental conditions change, this can result in changes to biodiversity. The effects of climate change on plant biodiversity can be predicted by using various models, for example bioclimatic models.

<span class="mw-page-title-main">Fish scale</span> Rigid covering growing atop a fishs skin

A fish scale is a small rigid plate that grows out of the skin of a fish. The skin of most jawed fishes is covered with these protective scales, which can also provide effective camouflage through the use of reflection and colouration, as well as possible hydrodynamic advantages. The term scale derives from the Old French escale, meaning a shell pod or husk.

<span class="mw-page-title-main">Superhydrophobic coating</span> Water-repellant coating

A superhydrophobic coating is a thin surface layer that repels water. It is made from superhydrophobic (ultrahydrophobicity) materials. Droplets hitting this kind of coating can fully rebound. Generally speaking, superhydrophobic coatings are made from composite materials where one component provides the roughness and the other provides low surface energy.

The Salvinia effect describes the permanent stabilization of an air layer upon a hierarchically structured surface submerged in water. Based on biological models, biomimetic Salvinia-surfaces are used as drag reducing coatings (up to 30% reduction were previously measured on the first prototypes. When applied to a ship hull, the coating would allow the boat to float on an air-layer, reducing energy consumption and emissions. Such surfaces require an extremely water repellent super-hydrophobic surface and an elastic hairy structure in the millimeter range to entrap air while submerged. The Salvinia effect was discovered by the biologist and botanist Wilhelm Barthlott and his colleagues and has been investigated on several plants and animals since 2002. Publications and patents were published between 2006 and 2016. The best biological models are the floating ferns with highly sophisticated hierarchically structured hairy surfaces, and the back swimmers with a complex double structure of hairs and microvilli. Three of the ten known Salvinia species show a paradoxical chemical heterogeneity: hydrophilic hair tips, in addition to the super-hydrophobic plant surface, further stabilizing the air layer.

Surface tension is one of the areas of interest in biomimetics research. Surface tension forces will only begin to dominate gravitational forces below length scales on the order of the fluid's capillary length, which for water is about 2 millimeters. Because of this scaling, biomimetic devices that utilize surface tension will generally be very small, however there are many ways in which such devices could be used.

<span class="mw-page-title-main">Biodiversity loss</span> Extinction of species or loss of species in a given habitat

Biodiversity loss happens when plant or animal species disappear completely from Earth (extinction) or when there is a decrease or disappearance of species in a specific area. Biodiversity loss means that there is a reduction in biological diversity in a given area. The decrease can be temporary or permanent. It is temporary if the damage that led to the loss is reversible in time, for example through ecological restoration. If this is not possible, then the decrease is permanent. The cause of most of the biodiversity loss is, generally speaking, human activities that push the planetary boundaries too far. These activities include habitat destruction and land use intensification. Further problem areas are air and water pollution, over-exploitation, invasive species and climate change.

Self-cleaning surfaces are a class of materials with the inherent ability to remove any debris or bacteria from their surfaces in a variety of ways. The self-cleaning functionality of these surfaces are commonly inspired by natural phenomena observed in lotus leaves, gecko feet, and water striders to name a few. The majority of self-cleaning surfaces can be placed into three categories:

  1. superhydrophobic
  2. superhydrophilic
  3. photocatalytic.

Bioinspiration is the development of novel materials, devices, and structures inspired by solutions found in biological evolution and refinement which has occurred over millions of years. The goal is to improve modeling and simulation of the biological system to attain a better understanding of nature's critical structural features, such as a wing, for use in future bioinspired designs. Bioinspiration differs from biomimicry in that the latter aims to precisely replicate the designs of biological materials. Bioinspired research is a return to the classical origins of science: it is a field based on observing the remarkable functions that characterize living organisms and trying to abstract and imitate those functions.

References

  1. Video German Award for the Environment https://www.youtube.com/watch?v=Y_bRmB2RiU0
  2. Vonna L. (2023). The Barthlott effect. Quantitative Plant Biology, 4, e16, Cambridge University Press Classics, https://dx.doi.org/10.1017/qpb.2023.15
  3. White, P. J. (23 January 2018). "Citation classics in Plant Science since 1992". Botany One / Annals of Botany .
  4. Vonna L. (2023). The Barthlott effect. Quantitative Plant Biology, 4, e16, Cambridge University Press Classics, https://dx.doi.org/10.1017/qpb.2023.15
  5. Yu, Cunming; Sasic, Srdjan; Liu, Kai; Salameh, Samir; Ras, Robin H.A.; van Ommen, J. Ruud (March 2020). "Nature–Inspired self–cleaning surfaces: Mechanisms, modelling, and manufacturing". Chemical Engineering Research and Design. 155: 48–65. doi:10.1016/j.cherd.2019.11.038. S2CID   212755274.
  6. Barthlott et al. (2009): A torch in the rainforest: thermogenesis of the Titan arum (Amorphophallus titanum). Plant Biol. 11 (4): 499–505 doi:10.1111/j.1438-8677.2008.00147.x
  7. Barthlott et al. (April 1998). "First protozoa-trapping plant found". Nature. 392 (6675): 447. Bibcode: 1998Natur.392Q.447B. doi:10.1038/33037. S2CID 4415405
  8. Greilhuber, J. et al. (2006): Smallest angiosperm genomes found in Lentibulariaceae, with chromosomes of bacterial size. Plant Biol. 8: 770–777, doi:10.1055/s-2006-924101
  9. Barthlott, W. et al. (2015): Biogeography and Biodiversity of Cacti. – Schumannia 7, pp. 1–205, ISSN 1437-2517
  10. Köster, Nils; Nieder, Jürgen; Barthlott, Wilhelm (November 2011). "Effect of Host Tree Traits on Epiphyte Diversity in Natural and Anthropogenic Habitats in Ecuador: Effect of Host Tree Traits on Epiphyte Diversity". Biotropica. 43 (6): 685–694. doi:10.1111/j.1744-7429.2011.00759.x. S2CID   86711152.
  11. Inselbergs. Ecological Studies. Vol. 146. 2000. doi:10.1007/978-3-642-59773-2. ISBN   978-3-642-64120-6. S2CID   263998814.
  12. Kier, G.; Kreft, H.; Lee, T. M.; Jetz, W.; Ibisch, P. L.; Nowicki, C.; Mutke, J.; Barthlott, W. (9 June 2009). "A global assessment of endemism and species richness across island and mainland regions". Proceedings of the National Academy of Sciences. 106 (23): 9322–9327. PNAS..106.9322K. doi:10.1073/pnas.0810306106. PMC 2685248. PMID 19470638
  13. Sommer, Kreft, Kier; Jetz; Mutke,; Barthlott (7 August 2010). "Projected impacts of climate change on regional capacities for global plant species richness". Proceedings of the Royal Society B: Biological Sciences. 277 (1692): 2271–2280. doi:10.1098/rspb.2010.0120. PMC 2894901. PMID 20335215
  14. Barthlott et al. (1996): Global distribution of species diversity in vascular plants: towards a world map of phytodiversity. Erdkunde 50: 317–327, doi:10.3112/erdkunde.1996.04.03
  15. Barthlott, W. & Rafiqpoor, M.D. (2016): Biodiversität im Wandel – Globale Muster der Artenvielfalt. In: Lozán et al.: Warnsignal Klima: Die Biodiversität, pp. 44–50. In Kooperation mit GEO- Verlag. Wissenschaftliche Auswertungen. www.warnsignal-klima.de.
  16. "BIOTA AFRICA". www.biota-africa.org. Retrieved 10 October 2021.
  17. Baeyer, H, C, von, (2000); The Lotus Effect. – The Sciences: J. New York Academy of Sciences 12–15, January 2000.
  18. Wilhelm Barthlott (2023): The Discovery of the Lotus Effect as a Key Innovation for Biomimetic Technologies. - in: Handbook of Self-Cleaning Surfaces and Materials: From Fundamentals to Applications, Chapter 15, S. 359–369 - Wiley-VCH, doi:10.1002/9783527690688.ch15
  19. Vonna L. (2023). The Barthlott effect. Quantitative Plant Biology, 4, e16, Cambridge University Press, https://dx.doi.org/10.1017/qpb.2023.15
  20. Forbes, P. (2006) The Gecko's Foot. – Fourth Estate, HarperCollins, New York, 272 pp.
  21. Barthlott, Wilhelm (2023). "Self-Cleaning Surfaces in Plants: The Discovery of the Lotus Effect as a Key Innovation for Biomimetic Technologies". Handbook of Self-Cleaning Surfaces and Materials. pp. 359–369. doi:10.1002/9783527690688.ch15. ISBN   9783527330966.
  22. "How The Lotus Effect Was Discovered". video
  23. Videos e.g. German Award for the Environment https://www.youtube.com/watch?v=Y_bRmB2RiU0 and Philip Morris Award
  24. Yu, Cunming et al. (March 2020). "Nature–Inspired self–cleaning surfaces: Mechanisms, modelling, and manufacturing". Chemical Engineering Research and Design. 155: 48–65. doi:10.1016/j.cherd.2019.11.038, S2CID 212755274
  25. Barthlott, W.; Mail, M.; Neinhuis, C. (6 August 2016). "Superhydrophobic hierarchically structured surfaces in biology: evolution, structural principles and biomimetic applications". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 374 (2073): 20160191. Bibcode:2016RSPTA.37460191B. doi:10.1098/rsta.2016.0191. PMC   4928508 . PMID   27354736.
  26. Biomimetic Research for Architecture and Building Construction. Biologically-Inspired Systems. Vol. 8. 2016. doi:10.1007/978-3-319-46374-2. ISBN   978-3-319-46372-8. S2CID   30823702.
  27. Barthlott, Wilhelm; Mail, Matthias; Bhushan, Bharat; Koch, Kerstin (April 2017). "Plant Surfaces: Structures and Functions for Biomimetic Innovations". Nano-Micro Letters. 9 (2): 23. Bibcode:2017NML.....9...23B. doi:10.1007/s40820-016-0125-1. PMC   6223843 . PMID   30464998.
  28. Barthlott, W., Büdel, B., Mail, M., Neumann, K.M., Bartels D. & E. Fischer (24 May 2022). "Superhydrophobic terrestrial Cyanobacteria and land plant transition". Frontiers in Plant Science . doi : 10.3389/fpls.2022.880439
  29. Busch, J.; Barthlott, W.; Brede, M.; Terlau, W.; Mail, M. (11 February 2019). "Bionics and green technology in maritime shipping: an assessment of the effect of Salvinia air-layer hull coatings for drag and fuel reduction". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 377 (2138): 20180263
  30. Barthlott, W.; Moosmann, M.; Noll, I.; Akdere, M.; Wagner, J.; Roling, N.; Koepchen-Thomä, L.; Azad, M. A. K.; Klopp, K.; Gries, T.; Mail, M. (20 March 2020). "Adsorption and superficial transport of oil on biological and bionic superhydrophobic surfaces: a novel technique for oil–water separation". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 378 (2167): 20190447. Bibcode:2020RSPTA.37890447B. doi:10.1098/rsta.2019.0447. PMC   7015282 . PMID   32008452.
  31. Beek, L., Barthlott, W. et al, (2023): Self-driven sustainable oil separation from water surfaces by biomimetic adsorbing and transporting textiles - Separations 10, 2023. - https://www.mdpi.com/2297-8739/10/12/592/pdf)
  32. Noga et al. (1991): Quantitative evaluation of epicuticular wax alterations as induced by surfactant treatment. Angew. Bot. 65: S. 239–252
  33. Barthlott et al. (2022): Superhydrophobic terrestrial Cyanobacteria and land plant transition – Front. Plant. Sci, doi:10.3389/fpls.2022.880439
  34. "Literatur, Musik, Wissenschaft: Akademie der Wissenschaften und der Literatur". www.adwmainz.de. Mainz. Retrieved 10 October 2021.
  35. Mitgliedseintrag von Prof. Dr. Wilhelm Barthlott (mit Bild und CV) bei der Deutschen Akademie der Naturforscher Leopoldina, retrieved 29 June 2016.
  36. "DBU – Deutscher Umweltpreis 1999 – Prof. Dr. Wilhelm Barthlott | Stichwort: Entdeckung des Lotuseffekts | Deutscher Umweltpreis". www.dbu.de. Retrieved 10 October 2021.
  37. "GLOBART | GLOBART Award".
  38. "News and Notes". Taxon. 51 (3): 593–595. 2002. doi:10.1002/tax.513004. JSTOR   1554889.