William Cruickshank (chemist)

Last updated

William Cruickshank
William Cruickshank.jpg
Borncirca 1740
Diedcirca 1811
Citizenship Scottish
Alma mater Royal College of Surgeons of England
King's College, Aberdeen
Known forcharacterization of carbon monoxide
Scientific career
Fields Chemistry
Institutions Royal Military Academy, Woolwich

William Cruickshank (born circa 1740 or 1750, [1] died 1810 or 1811 [2] ) was a Scottish military surgeon and chemist, and professor of chemistry at the Royal Military Academy, Woolwich. [3]

Contents

William Cruickshank was awarded a diploma by the Royal College of Surgeons of England on 5 October 1780. In March 1788 he became assistant to Adair Crawford at the Royal Military Academy, Woolwich, at a salary of £30 a year. On 24 June 1802, he became a Fellow of the Royal Society (FRS). [4]

Discoveries and inventions

He identified carbon monoxide as a compound containing carbon and oxygen in 1800. [5] In 1800 he also used chlorine to purify water. [6] He also discovered the chloralkali process. [7]

Strontium

Some authors credit Cruickshank with first suspecting an unknown substance in a Scottish mineral, strontianite, found near Strontian, in Argyleshire. Other authors name Adair Crawford for the discovery of this new earth, due to the mineral's property of imparting a redding color to a flame. [8] It was later isolated by Humphry Davy and is now known as strontium. [9] [10]

Diabetes

Cruickshank worked with John Rollo at Woolwich in the 1790s, and some of his discoveries about diabetes were published in Rollo's book on the dietary treatment of the condition. [4] This research led him to isolate urea in 1798, though his priority was not recognised at the time. [11]

Trough battery

Circa 1800, Cruickshank invented the Trough battery, an improvement on Alessandro Volta's voltaic pile. The plates were arranged horizontally in a trough, rather than vertically in a column. [12]

Electrolysis

Shortly after learning of Alessandro Volta's discovery of the Voltaic Pile in 1800, Cruickshank conducted a number of experiments involving electrolysis. He connected wires of silver to the poles of a battery and placed them into a solution of distilled water, and later into a variety of other solutions, observing the results. When the wires were placed into the various solutions of lead acetate, copper sulfate and silver nitrate, deposits of pure lead, copper and silver formed, respectively, on one wire. From these experiments he observed that "where metallic solutions are employed instead of water, the same wire which separates the hydrogen revives the metallic calx, and deposits it at the extremity of the wire in its pure metallic state." [13] This process of extraction of pure metals from metallic solutions is known today as electrowinning. It is used in the refining of copper and other metals.

Retirement and death

In March 1803, Cruickshank became very ill and it is possible that this was due to exposure to phosgene during his experiments. On 6 July 1804, he retired on a pension of 10 shillings a day. He died in 1810 or 1811 and military records state that the death occurred in Scotland. [4]

See also

Related Research Articles

<span class="mw-page-title-main">Calcium</span> Chemical element, symbol Ca and atomic number 20

Calcium is a chemical element with the symbol Ca and atomic number 20. As an alkaline earth metal, calcium is a reactive metal that forms a dark oxide-nitride layer when exposed to air. Its physical and chemical properties are most similar to its heavier homologues strontium and barium. It is the fifth most abundant element in Earth's crust, and the third most abundant metal, after iron and aluminium. The most common calcium compound on Earth is calcium carbonate, found in limestone and the fossilised remnants of early sea life; gypsum, anhydrite, fluorite, and apatite are also sources of calcium. The name derives from Latin calx "lime", which was obtained from heating limestone.

<span class="mw-page-title-main">Friedrich Wöhler</span> German chemist (1800–1882)

Friedrich Wöhler FRS(For) HonFRSE was a German chemist known for his work in both organic and inorganic chemistry, being the first to isolate the chemical elements beryllium and yttrium in pure metallic form. He was the first to prepare several inorganic compounds, including silane and silicon nitride.

<span class="mw-page-title-main">Strontium</span> Chemical element, symbol Sr and atomic number 38

Strontium is the chemical element with the symbol Sr and atomic number 38. An alkaline earth metal, strontium is a soft silver-white yellowish metallic element that is highly chemically reactive. The metal forms a dark oxide layer when it is exposed to air. Strontium has physical and chemical properties similar to those of its two vertical neighbors in the periodic table, calcium and barium. It occurs naturally mainly in the minerals celestine and strontianite, and is mostly mined from these.

<span class="mw-page-title-main">Voltaic pile</span> First electrical battery that could continuously provide an electric current to a circuit

The voltaic pile was the first electrical battery that could continuously provide an electric current to a circuit. It was invented by Italian chemist Alessandro Volta, who published his experiments in 1799. Its invention can be traced back to an argument between Volta and Luigi Galvani, Volta’s fellow Italian scientist who had conducted experiments on frogs' legs. The voltaic pile then enabled a rapid series of other discoveries including the electrical decomposition (electrolysis) of water into oxygen and hydrogen by William Nicholson and Anthony Carlisle (1800) and the discovery or isolation of the chemical elements sodium (1807), potassium (1807), calcium (1808), boron (1808), barium (1808), strontium (1808), and magnesium (1808) by Humphry Davy.

<span class="mw-page-title-main">Alkaline earth metal</span> Group of chemical elements

The alkaline earth metals are six chemical elements in group 2 of the periodic table. They are beryllium (Be), magnesium (Mg), calcium (Ca), strontium (Sr), barium (Ba), and radium (Ra). The elements have very similar properties: they are all shiny, silvery-white, somewhat reactive metals at standard temperature and pressure.

<span class="mw-page-title-main">Electrolysis</span> Technique in chemistry and manufacturing

In chemistry and manufacturing, electrolysis is a technique that uses direct electric current (DC) to drive an otherwise non-spontaneous chemical reaction. Electrolysis is commercially important as a stage in the separation of elements from naturally occurring sources such as ores using an electrolytic cell. The voltage that is needed for electrolysis to occur is called the decomposition potential. The word "lysis" means to separate or break, so in terms, electrolysis would mean "breakdown via electricity".

<span class="mw-page-title-main">Lemon battery</span> Simple battery made with a lemon for educational purposes

A lemon battery is a simple battery often made for the purpose of education. Typically, a piece of zinc metal and a piece of copper are inserted into a lemon and connected by wires. Power generated by reaction of the metals is used to power a small device such as a light-emitting diode (LED).

The year 1790 in science and technology involved some significant events.

<span class="mw-page-title-main">Martin Heinrich Klaproth</span> German chemist

Martin Heinrich Klaproth was a German chemist. He trained and worked for much of his life as an apothecary, moving in later life to the university. His shop became the second-largest apothecary in Berlin, and the most productive artisanal chemical research center in Europe.

<span class="mw-page-title-main">Johann Wilhelm Ritter</span> German scientist

Johann Wilhelm Ritter was a German chemist, physicist and philosopher. He was born in Samitz (Zamienice) near Haynau (Chojnów) in Silesia, and died in Munich.

<span class="mw-page-title-main">History of chemistry</span> Historical development of chemistry

The history of chemistry represents a time span from ancient history to the present. By 1000 BC, civilizations used technologies that would eventually form the basis of the various branches of chemistry. Examples include the discovery of fire, extracting metals from ores, making pottery and glazes, fermenting beer and wine, extracting chemicals from plants for medicine and perfume, rendering fat into soap, making glass, and making alloys like bronze.

<span class="mw-page-title-main">James Marsh (chemist)</span> British chemist

James Marsh was a British chemist who invented the Marsh test for detecting arsenic. Born in Kent, he was working as a labourer in Woolwich in the late 1810s and early 1820s, before joining the Royal Artillery. He was married to Mary, and had four children, two of whom died in infancy. His surviving daughters were Lavinia Bithiah (1821-1896) and Lucretia Victoria (1829-1910).

<span class="mw-page-title-main">Adair Crawford</span> British chemist and physician

Adair Crawford FRS FRSE, a chemist and physician, was a pioneer in the development of calorimetric methods for measuring the specific heat capacity of substances and the heat of chemical reactions. In his influential 1779 book "Experiments and Observations on Animal Heat", Crawford presented new experiments proving that respiratory gas exchange in animals is a combustion. Crawford also was involved in the discovery of the element strontium.

Electrochemistry, a branch of chemistry, went through several changes during its evolution from early principles related to magnets in the early 16th and 17th centuries, to complex theories involving conductivity, electric charge and mathematical methods. The term electrochemistry was used to describe electrical phenomena in the late 19th and 20th centuries. In recent decades, electrochemistry has become an area of current research, including research in batteries and fuel cells, preventing corrosion of metals, the use of electrochemical cells to remove refractory organics and similar contaminants in wastewater electrocoagulation and improving techniques in refining chemicals with electrolysis and electrophoresis.

<span class="mw-page-title-main">History of the battery</span> History of electricity source

Batteries provided the primary source of electricity before the development of electric generators and electrical grids around the end of the 19th century. Successive improvements in battery technology facilitated major electrical advances, from early scientific studies to the rise of telegraphs and telephones, eventually leading to portable computers, mobile phones, electric cars, and many other electrical devices.

<span class="mw-page-title-main">Vasily Vladimirovich Petrov</span>

Vasily Vladimirovich Petrov was a Russian experimental physicist, self-taught electrical technician, academician of Russian Academy of Sciences.

<span class="mw-page-title-main">Amalgam (chemistry)</span> Alloy of mercury with another metal

An amalgam is an alloy of mercury with another metal. It may be a liquid, a soft paste or a solid, depending upon the proportion of mercury. These alloys are formed through metallic bonding, with the electrostatic attractive force of the conduction electrons working to bind all the positively charged metal ions together into a crystal lattice structure. Almost all metals can form amalgams with mercury, the notable exceptions being iron, platinum, tungsten, and tantalum. Silver-mercury amalgams are important in dentistry, and gold-mercury amalgam is used in the extraction of gold from ore. Dentistry has used alloys of mercury with metals such as silver, copper, indium, tin and zinc.

<span class="mw-page-title-main">Delafossite</span> Copper iron oxide mineral

Delafossite is a copper iron oxide mineral with formula CuFeO2 or Cu1+Fe3+O2. It is a member of the delafossite mineral group, which has the general formula ABO2, a group characterized by sheets of linearly coordinated A cations stacked between edge-shared octahedral layers (BO6). Delafossite, along with other minerals of the ABO2 group, is known for its wide range of electrical properties, its conductivity varying from insulating to metallic. Delafossite is usually a secondary mineral that crystallizes in association with oxidized copper and rarely occurs as a primary mineral.

John Rollo M.D. was a Scottish military surgeon, now known for his work on a diabetic diet. Rollo was the first to suggest a low-carbohydrate diet as a treatment for diabetes.

<span class="mw-page-title-main">Luigi Valentino Brugnatelli</span> Italian chemist and inventor

Luigi Valentino Brugnatelli was an Italian chemist and inventor who discovered the process for electroplating in 1805.

References

  1. Watson, K. D. (23 September 2004). "Cruickshank, William (d. 1810/11), military surgeon and chemist" . Oxford Dictionary of National Biography . Vol. 1 (online ed.). Oxford University Press. doi:10.1093/ref:odnb/57592. ISBN   978-0-19-861412-8.(Subscription or UK public library membership required.)
  2. Neild, G. H. (September 1996). "William Cruickshank (FRS-1802): clinical chemist". Nephrology, Dialysis, Transplantation. 11 (9): 1885–1889. doi:10.1093/oxfordjournals.ndt.a027695. ISSN   0931-0509. PMID   8918649.
  3. Coutts, A. (June 1959). "William Cruickshank of Woolwich". Annals of Science. 15 (2): 121–133. doi:10.1080/00033795900200118. ISSN   0003-3790.
  4. 1 2 3 Watson, K. D. "Cruickshank, William". Oxford Dictionary of National Biography . Vol. 14 (online ed.). Oxford University Press. pp. 519–20. doi:10.1093/ref:odnb/57592.(Subscription or UK public library membership required.)
  5. Hopper, Christopher P.; Zambrana, Paige N.; Goebel, Ulrich; Wollborn, Jakob (June 2021). "A brief history of carbon monoxide and its therapeutic origins". Nitric Oxide. 111–112: 45–63. doi:10.1016/j.niox.2021.04.001. PMID   33838343. S2CID   233205099.
  6. Rideal, Samuel (1895). Disinfection and Disinfectants, p. 59. J.B. Lippincott Co.
  7. "Chloralkali process", Wikipedia, 7 October 2020, retrieved 7 October 2020
  8. A Handbook to a Collection of the Minerals of the British Islands... by Frederick William Rudler publ. HMSO (1905) page 211(available digitized by Google)
  9. Weeks, Mary Elvira (1932). "The discovery of the elements: X. The alkaline earth metals and magnesium and cadmium". Journal of Chemical Education. 9 (6): 1046–1057. Bibcode:1932JChEd...9.1046W. doi:10.1021/ed009p1046.
  10. Partington, J.R. (1942). "The early history of strontium". Annals of Science. 5 (2): 157–166. doi:10.1080/00033794200201411.
  11. (in French) Joseph Schiller, Wöhler, l'urée et le vitalisme, Sudhoffs Archiv Bd. 51, H. 3 (1967), pp. 229-243, at p. 231. Published by: Franz Steiner Verlag. Stable URL: https://www.jstor.org/stable/20775601
  12. Electricity by Robert M Ferguson, publ. Chambers (1873) page 169 (available digitized by Google).
  13. Elements of Galvanism in Theory and Practice, Vol. 2 by C.H. Wilkinson, publ. M'Millan (1804) pages 52 - 60 (available digitized by Google).