William E. Skaggs

Last updated
William E. Skaggs
William E. Skaggs.jpg
Alma mater University of Arizona
Scientific career
Fields neurophysiology, behavioral neuroscience, computational neuroscience
Institutions University of California, Davis
Thesis Relations between the theta rhythm and activity patterns of hippocampal neurons  (1995)
Doctoral advisor Bruce McNaughton
Other academic advisors Carol A. Barnes

William E. Skaggs was an American neuroscientist. He is noted for his work on the functioning of the hippocampus.

Contents

Education

Skaggs obtained his PhD in 1995 under the direction of Bruce McNaughton at the University of Arizona. [1]

Scholarship

Skaggs was a faculty member at the University of California, Davis, where he conducted research on neurophysiology in primates, often using computational neuroscience. [2] He was noted particularly for his elucidation of the role of theta waves in the function of the hippocampus, via their role in phase precession and firing replay. [2] This work led to a greater understanding of memory, learning, and navigation through space. [3]

He was also a science writer who helped popularize scientific concepts for a general audience. [3] In this role, he was an editor at Wikipedia, under the name Looie496. [3]

A special issue of the journal Behavioral Neuroscience was dedicated to Skaggs in 2020, noting that he had died from a heart attack. [4]

Publications

Google Scholar lists more than 40 publications that, together, have been cited over 10,000 times (three of them over 1000 times each), giving Skaggs an h-index of 26. [5] His most-cited papers are: [5]

  1. Skaggs, William E.; McNaughton, Bruce L.; Wilson, Matthew A.; Barnes, Carol A. (1996). "Theta phase precession in hippocampal neuronal populations and the compression of temporal sequences". Hippocampus . 6 (2): 149–172. doi:10.1002/(SICI)1098-1063(1996)6:2<149::AID-HIPO6>3.0.CO;2-K. PMID   8797016. S2CID   15813385. (>1800 citations)
  2. Skaggs, William E.; McNaughton, Bruce L. (29 March 1996). "Replay of neuronal firing sequences in rat hippocampus during sleep following spatial experience". Science . 271 (5257): 1870–1873. Bibcode:1996Sci...271.1870S. doi:10.1126/science.271.5257.1870. PMID   8596957. S2CID   23694471. (>1300 citations)
  3. McNaughton, B. L.; Barnes, C. A.; Gerrard, J. L.; Gothard, K.; Jung, M. W.; Knierim, J. J.; Kudrimoti, H.; Qin, Y.; Skaggs, W. E.; Suster, M.; Weaver, K. L. (1 January 1996). "Deciphering the Hippocampal Polyglot: the hippocampus as a path integration system". Journal of Experimental Biology . 199 (1): 173–185. doi: 10.1242/jeb.199.1.173 . PMID   8576689. (>1000 citations)

Related Research Articles

<span class="mw-page-title-main">Hippocampus</span> Vertebrate brain region involved in memory consolidation

The hippocampus is a major component of the brain of humans and other vertebrates. Humans and other mammals have two hippocampi, one in each side of the brain. The hippocampus is part of the limbic system, and plays important roles in the consolidation of information from short-term memory to long-term memory, and in spatial memory that enables navigation. The hippocampus is located in the allocortex, with neural projections into the neocortex, in humans as well as other primates. The hippocampus, as the medial pallium, is a structure found in all vertebrates. In humans, it contains two main interlocking parts: the hippocampus proper, and the dentate gyrus.

<span class="mw-page-title-main">Adult neurogenesis</span> Generating of neurons from neural stem cells in adults

Adult neurogenesis is the process in which neurons are generated from neural stem cells in the adult. This process differs from prenatal neurogenesis.

<span class="mw-page-title-main">Place cell</span> Place-activated hippocampus cells found in some mammals

A place cell is a kind of pyramidal neuron in the hippocampus that becomes active when an animal enters a particular place in its environment, which is known as the place field. Place cells are thought to act collectively as a cognitive representation of a specific location in space, known as a cognitive map. Place cells work with other types of neurons in the hippocampus and surrounding regions to perform this kind of spatial processing. They have been found in a variety of animals, including rodents, bats, monkeys and humans.

Theta waves generate the theta rhythm, a neural oscillation in the brain that underlies various aspects of cognition and behavior, including learning, memory, and spatial navigation in many animals. It can be recorded using various electrophysiological methods, such as electroencephalogram (EEG), recorded either from inside the brain or from electrodes attached to the scalp.

<span class="mw-page-title-main">Grid cell</span>

A grid cell is a type of neuron within the entorhinal cortex that fires at regular intervals as an animal navigates an open area, allowing it to understand its position in space by storing and integrating information about location, distance, and direction. Grid cells have been found in many animals, including rats, mice, bats, monkeys, and humans.

<span class="mw-page-title-main">Median raphe nucleus</span> Brain region having polygonal, fusiform, piriform neurons

The median raphe nucleus, also known as the nucleus raphes medianus (NRM) or superior central nucleus, is a brain region composed of polygonal, fusiform, and piriform neurons, which exists rostral to the nucleus raphes pontis. The MRN is located between the posterior end of the superior cerebellar peduncles and the V. Afferents of the motor nucleus. It is one of two nuclei, the other being the dorsal raphe nucleus (DnR), in the midbrain-pons.

<span class="mw-page-title-main">Retrosplenial cortex</span> Part of the brains cerebral cortex

The retrosplenial cortex (RSC) is a cortical area in the brain comprising Brodmann areas 29 and 30. It is secondary association cortex, making connections with numerous other brain regions. The region's name refers to its anatomical location immediately behind the splenium of the corpus callosum in primates, although in rodents it is located more towards the brain surface and is relatively larger. Its function is currently not well understood, but its location close to visual areas and also to the hippocampal spatial/memory system suggest it may have a role in mediating between perceptual and memory functions, particularly in the spatial domain. However, its exact contribution to either space or memory processing has been hard to pin down.

<span class="mw-page-title-main">Edvard Moser</span> Norwegian psychologist and neuroscientist

Edvard Ingjald Moser is a Norwegian psychologist and neuroscientist, who as of May 2024 is a professor at the Norwegian University of Science and Technology (NTNU) in Trondheim.

<span class="mw-page-title-main">May-Britt Moser</span> Norwegian psychologist and neuroscientist

May-Britt Moser is a Norwegian psychologist and neuroscientist, who is a Professor of Psychology and Neuroscience at the Norwegian University of Science and Technology (NTNU). She and her former husband, Edvard Moser, shared half of the 2014 Nobel Prize in Physiology or Medicine, awarded for work concerning the grid cells in the entorhinal cortex, as well as several additional space-representing cell types in the same circuit that make up the positioning system in the brain.

<span class="mw-page-title-main">Activity-regulated cytoskeleton-associated protein</span> Protein-coding gene in the species Homo sapiens

Activity-regulated cytoskeleton-associated protein is a plasticity protein that in humans is encoded by the ARC gene. The gene is believed to derive from a retrotransposon. The protein is found in the neurons of tetrapods and other animals where it can form virus-like capsids that transport RNA between neurons.

<span class="mw-page-title-main">Large irregular activity</span>

Large (amplitude) irregular activity (LIA), refers to one of two local field states that have been observed in the hippocampus. The other field state is that of the theta rhythm. The theta state is characterised by a steady slow oscillation of around 6–7 Hz. LIA has a predominantly lower oscillation frequency but contains some sharp spikes, called sharp waves of a higher frequency than that of theta. LIA accompanies the small irregular activity state to which the term LIA has been used to describe overall.

Sharp waves and ripples (SWRs) are oscillatory patterns produced by extremely synchronised activity of neurons in the mammalian hippocampus and neighbouring regions which occur spontaneously in idle waking states or during NREM sleep. They can be observed with a variety of imaging methods, such as EEG. They are composed of large amplitude sharp waves in local field potential and produced by tens of thousands of neurons firing together within 30–100 ms window. They are some of the most synchronous oscillations patterns in the brain, making them susceptible to pathological patterns such as epilepsy.They have been extensively characterised and described by György Buzsáki and have been shown to be involved in memory consolidation in NREM sleep and the replay of memories acquired during wakefulness.

<span class="mw-page-title-main">Phase resetting in neurons</span> Behavior observed in neurons

Phase resetting in neurons is a behavior observed in different biological oscillators and plays a role in creating neural synchronization as well as different processes within the body. Phase resetting in neurons is when the dynamical behavior of an oscillation is shifted. This occurs when a stimulus perturbs the phase within an oscillatory cycle and a change in period occurs. The periods of these oscillations can vary depending on the biological system, with examples such as: (1) neural responses can change within a millisecond to quickly relay information; (2) In cardiac and respiratory changes that occur throughout the day, could be within seconds; (3) circadian rhythms may vary throughout a series of days; (4) rhythms such as hibernation may have periods that are measured in years. This activity pattern of neurons is a phenomenon seen in various neural circuits throughout the body and is seen in single neuron models and within clusters of neurons. Many of these models utilize phase response (resetting) curves where the oscillation of a neuron is perturbed and the effect the perturbation has on the phase cycle of a neuron is measured.

<span class="mw-page-title-main">John O'Keefe (neuroscientist)</span> American–British neuroscientist

John O'Keefe, is an American-British neuroscientist, psychologist and a professor at the Sainsbury Wellcome Centre for Neural Circuits and Behaviour and the Research Department of Cell and Developmental Biology at University College London. He discovered place cells in the hippocampus, and that they show a specific kind of temporal coding in the form of theta phase precession. He shared the Nobel Prize in Physiology or Medicine in 2014, together with May-Britt Moser and Edvard Moser; he has received several other awards. He has worked at University College London for his entire career, but also held a part-time chair at the Norwegian University of Science and Technology at the behest of his Norwegian collaborators, the Mosers.

Hippocampal replay is a phenomenon observed in rats, mice, cats, rabbits, songbirds and monkeys. During sleep or awake rest, replay refers to the re-occurrence of a sequence of cell activations that also occurred during activity, but the replay has a much faster time scale. It may be in the same order, or in reverse. Cases were also found where a sequence of activations occurs before the actual activity, but it is still the same sequence. This is called preplay.

György Buzsáki is the Biggs Professor of Neuroscience at New York University School of Medicine.

<span class="mw-page-title-main">Phase precession</span> Neural mechanism

Phase precession is a neurophysiological process in which the time of firing of action potentials by individual neurons occurs progressively earlier in relation to the phase of the local field potential oscillation with each successive cycle. In place cells, a type of neuron found in the hippocampal region of the brain, phase precession is believed to play a major role in the neural coding of information. John O'Keefe, who later shared the 2014 Nobel Prize in Physiology or Medicine for his discovery that place cells help form a "map" of the body's position in space, co-discovered phase precession with Michael Recce in 1993.

The supramammillary nucleus (SuM), or supramammillary area, is a thin layer of cells in the brain that lies above the mammillary bodies. It can be considered part of the hypothalamus and diencephalon. The nucleus can be divided into medial and lateral sections. The medial SuM, or SuMM, is made of smaller cells which release dopamine and give input to the lateral septal nucleus. The lateral SuM, or SuML, is made of larger cells that project to the hippocampus.

Gina R. Poe is an American neuroscientist specializing in the study of sleep and its effect on memory and learning. Her findings have shown that the absence of noradrenaline and low levels of serotonin during sleep spindles allow the brain to form new memories during REM, as well as restructure old memory circuits to allow for more learning during later waking periods. She currently works as a professor at the University of California, Los Angeles (UCLA).

Cyriel Marie Antoine Pennartz is a Dutch neuroscientist serving as professor and head of the Department of Cognitive and Systems Neuroscience at the University of Amsterdam, the Netherlands. He is known for his research on memory, motivation, circadian rhythms, perception and consciousness. Pennartz’ work uses a multidisciplinary combination of techniques to understand the relationships between distributed neural activity and cognition, including in vivo electrophysiology and optical imaging, animal behavior and computational modelling.

References

  1. Skaggs, William E. (1995). "Relations between the theta rhythm and activity patterns of hippocampal neurons". UA Graduate and Undergraduate Research. University of Arizona. Retrieved 19 October 2023.
  2. 1 2 "William E. Skaggs – Publications". Neurotree. Retrieved 19 October 2023.
  3. 1 2 3 "Stories by William Skaggs". Scientific American. Retrieved 19 October 2023.
  4. Burke, Sara N.; Maurer, Drew P. (December 2020). "Floating ideas on theta waves". Behavioral Neuroscience. 134 (6): 471–474. doi:10.1037/bne0000438. PMC   8412214 . PMID   33570990.
  5. 1 2 "William Skaggs". Google Scholar . Retrieved 19 October 2023.