Wolfgang Lubitz

Last updated
Wolfgang Lubitz
Wolfgang Lubitz, MPICEC.jpg
Born1949 (age 7576)
NationalityGerman
EducationChemistry Free University Berlin (1969–1974)
Dr. rer. nat Free University Berlin (1977)
Habilitation Free University Berlin (1982)
Known for hydrogenases
oxygen-evolving complex
bacterial and plant photosynthesis
Electron paramagnetic resonance
Scientific career
Fields Chemistry
Biochemistry
Biophysics
Institutions Free University Berlin (1977–1989)
UC San Diego (1983–1984)
University of Stuttgart (1989–1991)
Technische Universität Berlin (1991–2000)
Max Planck Institute for Chemical Energy Conversion (2000–present)

Wolfgang Lubitz (born in 1949) is a German chemist and biophysicist. He is currently a director emeritus at the Max Planck Institute for Chemical Energy Conversion. He is well known for his work on bacterial photosynthetic reaction centres, [1] [2] [3] hydrogenase enzymes, [4] and the oxygen-evolving complex [5] [6] using a variety of biophysical techniques. He has been recognized by a Festschrift for his contributions to electron paramagnetic resonance (EPR) and its applications to chemical and biological systems. [7]

Contents

Education and career

He studied chemistry at the Free University Berlin from 1969 to 1974 and continued with his Dr. rer. nat. until 1977. From 1977 to 1982 he worked for his habilitation in organic chemistry at the Free University Berlin with a focus on electron paramagnetic resonance (EPR) and double resonance methods, such as ENDOR/TRIPLE. From 1979 to 1989 the FU Berlin employed him as an assistant professor, and as an associate professor at the Chemistry Department. From 1983 to 1984 he worked as a Max Kade Fellow at UC San Diego in the Physics Department with George Feher on EPR and ENDOR in photosynthesis. In 1989 he became an associate professor of experimental physics at the University of Stuttgart. In 1991 he returned to Berlin as a Full Professor and Chair of Physical Chemistry at the Max Volmer Institute at Technische Universität Berlin. He stayed until 2000 when he became a Scientific Member of the Max Planck Society and Director at the Max Planck Institute for Radiation Chemistry (in 2003 renamed Max Planck Institute for Bioinorganic Chemistry and in 2012 Max Planck Institute for Chemical Energy Conversion) in Mülheim an der Ruhr, North Rhine-Westphalia, Germany. In the same year, he became honorary professor of the Heinrich-Heine-University of Düsseldorf. From 2004 to 2012, he was managing director of the Max Planck Institute and is currently a director emeritus of the Max Planck Institute for Chemical Energy Conversion. [8] Since 2004, he has been a member of the council for the Lindau Nobel Laureate Meetings, and has been its vice-president since 2015. [9]

Research

His research focuses on the elementary processes of photosynthesis and catalytic metal centers in metalloproteins. He is an expert in the application of EPR spectroscopy and quantum chemical calculations. He has over 500 publications with more than 25,000 citations. [10]

EPR spectroscopy

Throughout his career, EPR has played an important role as a biophysical technique to gain information about radicals, radical pairs, triplet states and metal centers in chemistry and biochemistry. [1] [11] [5] Particular emphasis has been placed on methods that are able to resolve the electron-nuclear hyperfine couplings between the electron spin and the nuclear spins. Next to the more established techniques, electron spin echo modulation (ESEEM) and electron-nuclear double resonance (ENDOR), his group further developed and used electron-electron double resonance- (ELDOR) detected NMR (EDNMR) at a range of mw frequencies. [12] [13] [14] These techniques have been used by him and his group to extensively study bacterial photosynthetic reaction centres, their donor-acceptor model complexes, photosystem I, photosystem II, [1] [5] and a number of different hydrogenases. [11] [4]

Oxygen-evolving Complex

During his early career, bacterial photosynthetic reaction centres and oxygenic photosystem I and photosystem II [1] have been a main focus. He and his group studied light-induced chlorophyll donor [2] and quinone acceptor radical ions [3] of the primary electron-transfer chain. Later his research focused on the water splitting cycle (S-states) of photosystem II using advanced multifrequency pulse EPR, ENDOR and EDNMR techniques. His group was able to detect and characterize the flash-generated, freeze-trapped paramagnetic states S0, S2 and S3 (S1 is diamagnetic and S4 is a transient state) of the Mn4Ca1Ox catalytic cluster. By a careful spectral analysis–backed up by quantum chemical calculations the site oxidation and spin states of all Mn ions and their spin coupling for all intermediates of the catalytic cycle could be detected. [15] [16] [17] Further work using advanced Pulse EPR techniques, such as EDNMR, has led to information on the binding of water [18] and a proposal of an efficient O-O bond formation in the final state of the cycle. [15] [6]

[NiFe]- and [FeFe]-hydrogenase

Extensive work was performed on the [NiFe]-Hydrogenase where the magnetic tensors were measured and related to quantum chemical calculations. [11] [4] Through his work, the structures of all intermediates in the activation path and catalytic cycle of [NiFe]-hydrogenases were obtained. In the course of this work a 0.89 Ångström resolution X-ray crystallography diffraction model of [NiFe]-hydrogenase was achieved. [19]

Similar work has been accomplished for the [FeFe]-hydrogenases. [4] A key contribution of his research was the EPR spectroscopic evidence of an azapropane-dithiolate-ligand (ADT-ligand) in the dithiol bridge of the [FeFe]-hydrogenase active site [20] and the determination of the magnitude and orientation of the g-tensor using single crystal EPR. [21] The ADT-ligand was later confirmed by artificial maturation of [FeFe]-hydrogenases. [22] Using artificial maturation, the protein could be generated without the co-factor (apoprotein) using E. coli mutagenesis and a synthetically created active site could be inserted, [22] [23] [24] which has opened new vistas in hydrogenase research. [25]

Awards and recognition

Related Research Articles

<span class="mw-page-title-main">Dynamic nuclear polarization</span> Spin polarization of atomic nuclei in response to electron spin realignment in a magnetic field

Dynamic nuclear polarization (DNP) is one of several hyperpolarization methods developed to enhance the sensitivity of nuclear magnetic resonance (NMR) spectroscopy. While an essential analytical tool with applications in several fields, NMR’s low sensitivity poses major limitations to analyzing samples with low concentrations and limited masses and volumes. This low sensitivity is due to the relatively low nuclear gyromagnetic ratios (γn) of NMR active nuclei (1H, 13C, 15N, etc.) as well as the low natural abundance of certain nuclei. Several techniques have been developed to address this limitation, including hardware adjustments to NMR instruments and equipment (e.g., NMR tubes), improvements to data processing methods, and polarization transfer methods to NMR active nuclei in a sample—under which DNP falls.

Site-directed spin labeling (SDSL) is a technique for investigating the structure and local dynamics of proteins using electron spin resonance. The theory of SDSL is based on the specific reaction of spin labels with amino acids. A spin label's built-in protein structure can be detected by EPR spectroscopy. SDSL is also a useful tool in examinations of the protein folding process.

In chemistry, a nitrene or imene is the nitrogen analogue of a carbene. The nitrogen atom is uncharged and monovalent, so it has only 6 electrons in its valence level—two covalent bonded and four non-bonded electrons. It is therefore considered an electrophile due to the unsatisfied octet. A nitrene is a reactive intermediate and is involved in many chemical reactions. The simplest nitrene, HN, is called imidogen, and that term is sometimes used as a synonym for the nitrene class.

<span class="mw-page-title-main">Oxygen-evolving complex</span>

The oxygen-evolving complex (OEC), also known as the water-splitting complex, is a water-oxidizing enzyme involved in the photo-oxidation of water during the light reactions of photosynthesis. OEC is surrounded by 4 core proteins of photosystem II at the membrane-lumen interface. The mechanism for splitting water involves absorption of three photons before the fourth provides sufficient energy for water oxidation. Based on a widely accepted theory from 1970 by Kok, the complex can exist in 5 states, denoted S0 to S4, with S0 the most reduced and S4 the most oxidized. Photons trapped by photosystem II move the system from state S0 to S1 to S2 to S3 and finally to S4. S4 reacts with water producing free oxygen:

<span class="mw-page-title-main">Electron paramagnetic resonance</span> Technique to study materials that have unpaired electrons

Electron paramagnetic resonance (EPR) or electron spin resonance (ESR) spectroscopy is a method for studying materials that have unpaired electrons. The basic concepts of EPR are analogous to those of nuclear magnetic resonance (NMR), but the spins excited are those of the electrons instead of the atomic nuclei. EPR spectroscopy is particularly useful for studying metal complexes and organic radicals. EPR was first observed in Kazan State University by Soviet physicist Yevgeny Zavoisky in 1944, and was developed independently at the same time by Brebis Bleaney at the University of Oxford.

A hydrogenase is an enzyme that catalyses the reversible oxidation of molecular hydrogen (H2), as shown below:

In chemistry, a diradical is a molecular species with two electrons occupying molecular orbitals (MOs) which are degenerate. The term "diradical" is mainly used to describe organic compounds, where most diradicals are extremely reactive and non-Kekulé molecules that are rarely isolated. Diradicals are even-electron molecules but have one fewer bond than the number permitted by the octet rule.

<span class="mw-page-title-main">Biohydrogen</span> Hydrogen that is produced biologically

Biohydrogen is H2 that is produced biologically. Interest is high in this technology because H2 is a clean fuel and can be readily produced from certain kinds of biomass, including biological waste. Furthermore some photosynthetic microorganisms are capable to produce H2 directly from water splitting using light as energy source.

<span class="mw-page-title-main">Ferredoxin hydrogenase</span> Class of enzymes

In enzymology, ferredoxin hydrogenase, also referred to as [Fe-Fe]hydrogenase, H2 oxidizing hydrogenase, H2 producing hydrogenase, bidirectional hydrogenase, hydrogenase (ferredoxin), hydrogenlyase, and uptake hydrogenase, is found in Clostridium pasteurianum, Clostridium acetobutylicum,Chlamydomonas reinhardtii, and other organisms. The systematic name of this enzyme is hydrogen:ferredoxin oxidoreductase

Electron nuclear double resonance (ENDOR) is a magnetic resonance technique for elucidating the molecular and electronic structure of paramagnetic species. The technique was first introduced to resolve interactions in electron paramagnetic resonance (EPR) spectra. It is currently practiced in a variety of modalities, mainly in the areas of biophysics and heterogeneous catalysis.

Frank Neese is a German theoretical chemist at the Max Planck Institute for Coal Research. He is the author of more than 440 scientific articles in journals of Chemistry, Biochemistry and Physics. His work focuses on the theory of magnetic spectroscopies and their experimental and theoretical application, local pair natural orbital correlation theories, spectroscopy oriented configuration interaction, electronic and geometric structure and reactivity of transition metal complexes and metalloenzymes. He is lead author of the ORCA quantum chemistry computer program. His methods have been applied to a range of problems in coordination chemistry, homogeneous catalysis, and bioinorganic chemistry.

[NiFe] hydrogenase is a type of hydrogenase, which is an oxidative enzyme that reversibly converts molecular hydrogen in prokaryotes including Bacteria and Archaea. The catalytic site on the enzyme provides simple hydrogen-metabolizing microorganisms a redox mechanism by which to store and utilize energy via the reaction

<span class="mw-page-title-main">Bill Rutherford</span>

Alfred William Rutherford is Professor and Chair in Biochemistry of Solar energy in the Department of Life sciences at Imperial College London.

Sandra Eaton is an American chemist and professor at the University of Denver, known for her work on electron paramagnetic resonance.

<span class="mw-page-title-main">Spectroelectrochemistry</span> Set Of multi-response ANALYTICAL techniques

Spectroelectrochemistry (SEC) is a set of multi-response analytical techniques in which complementary chemical information is obtained in a single experiment. Spectroelectrochemistry provides a whole vision of the phenomena that take place in the electrode process. The first spectroelectrochemical experiment was carried out by Theodore Kuwana, PhD, in 1964.

R. David Britt is the Winston Ko Chair and Distinguished Professor of Chemistry at the University of California, Davis. Britt uses electron paramagnetic resonance (EPR) spectroscopy to study metalloenzymes and enzymes containing organic radicals in their active sites. Britt is the recipient of multiple awards for his research, including the Bioinorganic Chemistry Award in 2019 and the Bruker Prize in 2015 from the Royal Society of Chemistry. He has received a Gold Medal from the International EPR Society (2014), and the Zavoisky Award from the Kazan Scientific Center of the Russian Academy of Sciences (2018). He is a Fellow of the American Association for the Advancement of Science and of the Royal Society of Chemistry.

{{Infobox scientist | name = Marina Bennati | workplaces = [[Max Planck Institute for multidisciplinary Sciences]
[University of Göttingen]]
Goethe University Frankfurt
Massachusetts Institute of Technology | alma_mater = University of Stuttgart
University of Münster | thesis_title = Zeitaufgelöste Elektronen-Spin-Resonanz an photoangeregten Zuständen spezieller Donor-Akzeptor-Systeme | thesis_url = http://www.worldcat.org/oclc/258062810 | thesis_year = 1995 }}

Frances Ann Walker was an American chemist known for her work on heme protein chemistry. She was an elected fellow of the American Association for the Advancement of Science and the American Chemical Society.

<span class="mw-page-title-main">Stable phosphorus radicals</span>

Stable and persistent phosphorus radicals are phosphorus-centred radicals that are isolable and can exist for at least short periods of time. Radicals consisting of main group elements are often very reactive and undergo uncontrollable reactions, notably dimerization and polymerization. The common strategies for stabilising these phosphorus radicals usually include the delocalisation of the unpaired electron over a pi system or nearby electronegative atoms, and kinetic stabilisation with bulky ligands. Stable and persistent phosphorus radicals can be classified into three categories: neutral, cationic, and anionic radicals. Each of these classes involve various sub-classes, with neutral phosphorus radicals being the most extensively studied. Phosphorus exists as one isotope 31P (I = 1/2) with large hyperfine couplings relative to other spin active nuclei, making phosphorus radicals particularly attractive for spin-labelling experiments.

<span class="mw-page-title-main">Boryl radicals</span> The structure, history, chemistry and potential applications of radicals centered on boron atoms

Boryl radicals are defined as chemical species with an unpaired electron localized on the boron atom in a molecule. There is renewed interest in their discovery as they have recently showcased useful organic reactivities. While the first studies of boryl radicals involved borane radical anions, the study of overall neutral boryl radical species was unlocked through the investigation of what are referred to as ligated boryl radicals. A boryl radical in its isolated form has a three-center-five-electron (3c-5e) configuration, while the ligation results in its transformation to a four-center-seven-electron complex (4c-7e). These descriptions found in the literature refer to the number of coordinated atoms that surround the boron atom plus the boron atom, and the number of electrons involved in the immediate bonding environment. For example, in the case of the 3c-5e boryl radical, the boron is covalently bonded to two atoms and is predicted to have its unpaired electron in the sp2-like orbital. This leads to a highly reactive radical and an empty p orbital on the boron. In contrast, the ligated boryl radicals with a 4c-7e configuration have an additional, dative bond with a Lewis base, such that the sp2 orbital is now filled. In this configuration, the radical occupies the p orbital and has the appropriate symmetry to interact with the coordinated groups and the ligand, allowing the otherwise strongly lewis basic radical to be stabilized. These structures, and the stabilizing interactions are showcased in the figure below.

References

  1. 1 2 3 4 Lubitz, Wolfgang; Lendzian, Friedhelm; Bittl, Robert (2002). "Radicals, Radical Pairs and Triplet States in Photosynthesis". Accounts of Chemical Research. 35 (5): 313–320. doi:10.1021/ar000084g. ISSN   0001-4842. PMID   12020169.
  2. 1 2 Lendzian, F.; Huber, M.; Isaacson, R. A.; Endeward, B.; Plato, M.; Bönigk, B.; Möbius, K.; Lubitz, W.; Feher, G. (1993). "The electronic structure of the primary donor cation radical in Rhodobacter sphaeroides R-26: ENDOR and TRIPLE resonance studies in single crystals of reaction centers". Biochimica et Biophysica Acta (BBA) - Bioenergetics. 1183 (1): 139–160. doi:10.1016/0005-2728(93)90013-6. ISSN   0005-2728.
  3. 1 2 Lubitz, W.; Feher, G. (1999). "The primary and secondary acceptors in bacterial photosynthesis III. Characterization of the quinone radicals QA− ⋅ and QB− ⋅ by EPR and ENDOR". Applied Magnetic Resonance. 17 (1): 1–48. doi:10.1007/BF03162067. ISSN   0937-9347. S2CID   95064414.
  4. 1 2 3 4 Lubitz, W.; Ogata, H.; Rüdiger, O.; Reijerse, E. J. (2014). "Hydrogenases". Chemical Reviews. 114 (8): 4081–4148. doi:10.1021/cr4005814. PMID   24655035.
  5. 1 2 3 Cox, N.; Pantazis, D. A.; Neese, F.; Lubitz, W. (2013). "Biological Water Oxidation". Accounts of Chemical Research. 46 (7): 1588–1596. doi:10.1021/ar3003249. PMID   23506074.
  6. 1 2 Lubitz, Wolfgang; Chrysina, Maria; Cox, Nicholas (2019). "Water oxidation in photosystem II". Photosynthesis Research. 142 (1): 105–125. Bibcode:2019PhoRe.142..105L. doi:10.1007/s11120-019-00648-3. ISSN   0166-8595. PMC   6763417 . PMID   31187340.
  7. "Wolfgang Lubitz Festschrift Special Issue". Journal of Physical Chemistry B Volume 119, Issue 43 (2015). ACS Publications. Retrieved December 5, 2019.
  8. "Wolfgang Lubitz (Emeriti)". Max Planck for Chemical Energy Conversion. Open Publishing. Retrieved July 17, 2019.
  9. "Wolfgang Lubitz". The Lindau Nobel Laureate Meetings. Open Publishing. Retrieved July 17, 2019.
  10. "Wolfgang Lubitz (Google Scholar)". Google Scholar. Open Publishing. Retrieved December 5, 2019.
  11. 1 2 3 Lubitz, Wolfgang; Reijerse, Eduard; van Gastel, Maurice (2007). "[NiFe] and [FeFe] Hydrogenases Studied by Advanced Magnetic Resonance Techniques". Chemical Reviews. 107 (10): 4331–4365. doi:10.1021/cr050186q. ISSN   0009-2665. PMID   17845059.
  12. Cox, N.; Lubitz, W.; Savitsky, A. (2013). "W-band ELDOR-detected NMR (EDNMR) spectroscopy as a versatile technique for the characterisation of transition metal–ligand interactions". Molecular Physics. 111 (18–19): 2788–2808. Bibcode:2013MolPh.111.2788C. doi:10.1080/00268976.2013.830783. ISSN   0026-8976. S2CID   97147588.
  13. Nalepa, A.; Möbius, K.; Lubitz, W.; Savitsky, A. (2014). "High-field ELDOR-detected NMR study of a nitroxide radical in disordered solids: Towards characterization of heterogeneity of microenvironments in spin-labeled systems". Journal of Magnetic Resonance. 242: 203–213. Bibcode:2014JMagR.242..203N. doi:10.1016/j.jmr.2014.02.026. ISSN   1090-7807. PMID   24685717.
  14. Cox, N.; Nalepa, A.; Pandelia, M.-E.; Lubitz, W.; Savitsky, A. (2015). "Pulse Double-Resonance EPR Techniques for the Study of Metallobiomolecules". Electron Paramagnetic Resonance Investigations of Biological Systems by Using Spin Labels, Spin Probes, and Intrinsic Metal Ions, Part A. Methods in Enzymology. Vol. 563. pp. 211–249. doi:10.1016/bs.mie.2015.08.016. ISBN   9780128028346. ISSN   0076-6879. PMID   26478487.
  15. 1 2 Cox, N.; Retegan, M.; Neese, F.; Pantazis, D. A.; Boussac, A.; Lubitz, W. (2014). "Electronic structure of the oxygen-evolving complex in photosystem II prior to O-O bond formation". Science. 345 (6198): 804–808. Bibcode:2014Sci...345..804C. doi:10.1126/science.1254910. ISSN   0036-8075. PMID   25124437. S2CID   13503746.
  16. Krewald, V.; Retegan, M.; Cox, N.; Messinger, J.; Lubitz, W.; DeBeer, S.; Neese, F.; Pantazis, D. A. (2015). "Metal oxidation states in biological water splitting". Chemical Science. 6 (3): 1676–1695. doi: 10.1039/C4SC03720K . ISSN   2041-6520. PMC   5639794 . PMID   29308133.
  17. Krewald, V.; Retegan, M.; Neese, F.; Lubitz, W.; Pantazis, D. A.; Cox, N. (2016). "Spin State as a Marker for the Structural Evolution of Nature's Water-Splitting Catalyst". Inorganic Chemistry. 55 (2): 488–501. doi:10.1021/acs.inorgchem.5b02578. hdl: 1885/230998 . ISSN   0020-1669. PMID   26700960.
  18. Rapatskiy, Leonid; Cox, Nicholas; Savitsky, Anton; Ames, William M.; Sander, Julia; Nowaczyk, Marc. M.; Rögner, Matthias; Boussac, Alain; Neese, Frank; Messinger, Johannes; Lubitz, Wolfgang (2012). "Detection of the Water-Binding Sites of the Oxygen-Evolving Complex of Photosystem II Using W-Band 17O Electron–Electron Double Resonance-Detected NMR Spectroscopy". Journal of the American Chemical Society. 134 (40): 16619–16634. Bibcode:2012JAChS.13416619R. doi:10.1021/ja3053267. ISSN   0002-7863. PMID   22937979.
  19. Ogata, H.; Nishikawa, K.; Lubitz, W. (2015). "Hydrogens detected by subatomic resolution protein crystallography in a [NiFe] hydrogenase". Nature. 520 (7548): 571–574. Bibcode:2015Natur.520..571O. doi:10.1038/nature14110. ISSN   0028-0836. PMID   25624102. S2CID   4464257.
  20. Silakov, A.; Wenk, B.; Reijerse, E.J.; Lubitz, W. (2009). "14N HYSCORE investigation of the H-cluster of [FeFe] hydrogenase: evidence for a nitrogen in the dithiol bridge". Physical Chemistry Chemical Physics. 11 (31): 6592–9. Bibcode:2009PCCP...11.6592S. doi:10.1039/b905841a. ISSN   1463-9076. PMID   19639134.
  21. Sidabras, Jason W.; Duan, Jifu; Winkler, Martin; Happe, Thomas; Hussein, Rana; Zouni, Athina; Suter, Dieter; Schnegg, Alexander; Lubitz, Wolfgang; Reijerse, Edward J. (2019). "Extending electron paramagnetic resonance to nanoliter volume protein single crystals using a self-resonant microhelix". Science Advances. 5 (10): eaay1394. Bibcode:2019SciA....5.1394S. doi: 10.1126/sciadv.aay1394 . ISSN   2375-2548. PMC   6777973 . PMID   31620561.
  22. 1 2 Berggren, G.; Adamska, A.; Lambertz, C.; Simmons, T. R.; Esselborn, J.; Atta, M.; Gambarelli, S.; Mouesca, J.-M.; Reijerse, E.; Lubitz, W.; Happe, T.; Artero, V.; Fontecave, M. (2013). "Biomimetic assembly and activation of [FeFe]-hydrogenases". Nature. 499 (7456): 66–69. Bibcode:2013Natur.499...66B. doi:10.1038/nature12239. ISSN   0028-0836. PMC   3793303 . PMID   23803769.
  23. Esselborn, J.; Lambertz, C.; Adamska-Venkatesh, A.; Simmons, T.; Berggren, G.; Noth, J.; Siebel, J.; Hemschemeier, A.; Artero, V.; Reijerse, E. J.; Fontecave, M.; Lubitz, W.; Happe, T. (2013). "Spontaneous activation of [FeFe]-hydrogenases by an inorganic [2Fe] active site mimic". Nature Chemical Biology. 9 (10): 607–609. doi:10.1038/nchembio.1311. ISSN   1552-4450. PMC   3795299 . PMID   23934246.
  24. Siebel, Judith F.; Adamska-Venkatesh, Agnieszka; Weber, Katharina; Rumpel, Sigrun; Reijerse, Edward; Lubitz, Wolfgang (2015). "Hybrid [FeFe]-Hydrogenases with Modified Active Sites Show Remarkable Residual Enzymatic Activity". Biochemistry. 54 (7): 1474–1483. doi:10.1021/bi501391d. ISSN   0006-2960. PMID   25633077.
  25. Birrell, James A.; Rüdiger, Olaf; Reijerse, Edward J.; Lubitz, Wolfgang (2017). "Semisynthetic Hydrogenases Propel Biological Energy Research into a New Era". Joule. 1 (1): 61–76. Bibcode:2017Joule...1...61B. doi: 10.1016/j.joule.2017.07.009 . ISSN   2542-4351.