Work (electric field)

Last updated

Electric field work is the work performed by an electric field on a charged particle in its vicinity. The particle located experiences an interaction with the electric field. The work per unit of charge is defined by moving a negligible test charge between two points, and is expressed as the difference in electric potential at those points. The work can be done, for example, by electrochemical devices (electrochemical cells) or different metals junctions[ clarification needed ] generating an electromotive force.

Contents

Electric field work is formally equivalent to work by other force fields in physics, [1] and the formalism for electrical work is identical to that of mechanical work.

Physical process

Particles that are free to move, if positively charged, normally tend towards regions of lower electric potential (net negative charge), while negatively charged particles tend to shift towards regions of higher potential (net positive charge).

Any movement of a positive charge into a region of higher potential requires external work to be done against the electric field, which is equal to the work that the electric field would do in moving that positive charge the same distance in the opposite direction. Similarly, it requires positive external work to transfer a negatively charged particle from a region of higher potential to a region of lower potential.

Kirchhoff's voltage law, one of the most fundamental laws governing electrical and electronic circuits, tells us that the voltage gains and the drops in any electrical circuit always sum to zero.

The formalism for electric work has an equivalent format to that of mechanical work. The work per unit of charge, when moving a negligible test charge between two points, is defined as the voltage between those points.

where

Q is the electric charge of the particle
E is the electric field, which at a location is the force at that location divided by a unit ('test') charge
FE is the Coulomb (electric) force
r is the displacement
is the dot product operator

Mathematical description

Given a charged object in empty space, Q+. To move q+ closer to Q+ (starting from , where the potential energy=0, for convenience), we would have to apply an external force against the Coulomb field and positive work would be performed. Mathematically, using the definition of a conservative force, we know that we can relate this force to a potential energy gradient as:

Where U(r) is the potential energy of q+ at a distance r from the source Q. So, integrating and using Coulomb's Law for the force:

Now, use the relationship

To show that the external work done to move a point charge q+ from infinity to a distance r is:

This could have been obtained equally by using the definition of W and integrating F with respect to r, which will prove the above relationship.

In the example both charges are positive; this equation is applicable to any charge configuration (as the product of the charges will be either positive or negative according to their (dis)similarity). If one of the charges were to be negative in the earlier example, the work taken to wrench that charge away to infinity would be exactly the same as the work needed in the earlier example to push that charge back to that same position. This is easy to see mathematically, as reversing the boundaries of integration reverses the sign.

Uniform electric field

Where the electric field is constant (i.e. not a function of displacement, r), the work equation simplifies to:

or 'force times distance' (times the cosine of the angle between them).

Electric power

The electric power is the rate of energy transferred in an electric circuit. As a partial derivative, it is expressed as the change of work over time:

,

where V is the voltage. Work is defined by:

Therefore

Related Research Articles

<span class="mw-page-title-main">Potential energy</span> Energy held by an object because of its position relative to other objects

In physics, potential energy is the energy held by an object because of its position relative to other objects, stresses within itself, its electric charge, or other factors. The term potential energy was introduced by the 19th-century Scottish engineer and physicist William Rankine, although it has links to the ancient Greek philosopher Aristotle's concept of potentiality.

<span class="mw-page-title-main">Electric field</span> Physical field surrounding an electric charge

An electric field is the physical field that surrounds electrically charged particles. Charged particles exert attractive forces on each other when their charges are opposite, and repulsion forces on each other when their charges are the same. Because these forces are exerted mutually, 2 charges must be present for the forces to take place. The electric field of a single charge describes their capacity to exert such forces on another charged object. These forces are described by Coulomb's Law, which says that the greater the magnitude of the charges, the greater the force, and the greater the distance between them, the weaker the force. Thus, we may informally say that the greater the charge of an object, the stronger its electric field. Similarly, the electric field is stronger nearer charged objects and weaker further away. Electric fields originate from electric charges and time-varying electric currents. Electric fields and magnetic fields are both manifestations of the electromagnetic field, one of the four fundamental forces of nature.

<span class="mw-page-title-main">Electric potential</span> Line integral of the electric field

The electric potential is defined as the amount of work energy needed per unit of electric charge to move this charge from a reference point to the specific point in an electric field. More precisely, it is the energy per unit charge for a test charge that is so small that the disturbance of the field under consideration is negligible. The motion across the field is supposed to proceed with negligible acceleration, so as to avoid the test charge acquiring kinetic energy or producing radiation. By definition, the electric potential at the reference point is zero units. Typically, the reference point is earth or a point at infinity, although any point can be used.

<span class="mw-page-title-main">Gauss's law</span> Foundational law of electromagnetism relating electric field and charge distributions

In physics, Gauss's law, also known as Gauss's flux theorem, is a law relating the distribution of electric charge to the resulting electric field. In its integral form, it states that the flux of the electric field out of an arbitrary closed surface is proportional to the electric charge enclosed by the surface, irrespective of how that charge is distributed. Even though the law alone is insufficient to determine the electric field across a surface enclosing any charge distribution, this may be possible in cases where symmetry mandates uniformity of the field. Where no such symmetry exists, Gauss's law can be used in its differential form, which states that the divergence of the electric field is proportional to the local density of charge.

<span class="mw-page-title-main">Noether's theorem</span> Statement relating differentiable symmetries to conserved quantities

Noether's theorem or Noether's first theorem states that every differentiable symmetry of the action of a physical system with conservative forces has a corresponding conservation law. The theorem was proven by mathematician Emmy Noether in 1915 and published in 1918. The action of a physical system is the integral over time of a Lagrangian function, from which the system's behavior can be determined by the principle of least action. This theorem only applies to continuous and smooth symmetries over physical space.

<span class="mw-page-title-main">Fokker–Planck equation</span> Partial differential equation

In statistical mechanics and information theory, the Fokker–Planck equation is a partial differential equation that describes the time evolution of the probability density function of the velocity of a particle under the influence of drag forces and random forces, as in Brownian motion. The equation can be generalized to other observables as well. The Fokker-Planck equation has multiple applications in information theory, graph theory, data science, finance, economics etc.

In mathematics, the Laplace operator or Laplacian is a differential operator given by the divergence of the gradient of a scalar function on Euclidean space. It is usually denoted by the symbols , (where is the nabla operator), or . In a Cartesian coordinate system, the Laplacian is given by the sum of second partial derivatives of the function with respect to each independent variable. In other coordinate systems, such as cylindrical and spherical coordinates, the Laplacian also has a useful form. Informally, the Laplacian Δf (p) of a function f at a point p measures by how much the average value of f over small spheres or balls centered at p deviates from f (p).

<span class="mw-page-title-main">Electrostatics</span> Study of stationary or slow-moving electric charges

Electrostatics is a branch of physics that studies slow-moving or stationary electric charges.

<span class="mw-page-title-main">Classical electromagnetism</span> Branch of theoretical physics

Classical electromagnetism or classical electrodynamics is a branch of theoretical physics that studies the interactions between electric charges and currents using an extension of the classical Newtonian model. It is, therefore, a classical field theory. The theory provides a description of electromagnetic phenomena whenever the relevant length scales and field strengths are large enough that quantum mechanical effects are negligible. For small distances and low field strengths, such interactions are better described by quantum electrodynamics which is a quantum field theory.

<span class="mw-page-title-main">Displacement current</span> Physical quantity in electromagnetism

In electromagnetism, displacement current density is the quantity D/∂t appearing in Maxwell's equations that is defined in terms of the rate of change of D, the electric displacement field. Displacement current density has the same units as electric current density, and it is a source of the magnetic field just as actual current is. However it is not an electric current of moving charges, but a time-varying electric field. In physical materials, there is also a contribution from the slight motion of charges bound in atoms, called dielectric polarization.

In mechanics, virtual work arises in the application of the principle of least action to the study of forces and movement of a mechanical system. The work of a force acting on a particle as it moves along a displacement is different for different displacements. Among all the possible displacements that a particle may follow, called virtual displacements, one will minimize the action. This displacement is therefore the displacement followed by the particle according to the principle of least action.

The work of a force on a particle along a virtual displacement is known as the virtual work.

A classical field theory is a physical theory that predicts how one or more physical fields interact with matter through field equations, without considering effects of quantization; theories that incorporate quantum mechanics are called quantum field theories. In most contexts, 'classical field theory' is specifically intended to describe electromagnetism and gravitation, two of the fundamental forces of nature.

<span class="mw-page-title-main">Electric potential energy</span> Potential energy that results from conservative Coulomb forces

Electric potential energy is a potential energy that results from conservative Coulomb forces and is associated with the configuration of a particular set of point charges within a defined system. An object may be said to have electric potential energy by virtue of either its own electric charge or its relative position to other electrically charged objects.

The Vlasov equation is a differential equation describing time evolution of the distribution function of plasma consisting of charged particles with long-range interaction, such as the Coulomb interaction. The equation was first suggested for the description of plasma by Anatoly Vlasov in 1938 and later discussed by him in detail in a monograph.

<span class="mw-page-title-main">Charge density</span> Electric charge per unit length, area or volume

In electromagnetism, charge density is the amount of electric charge per unit length, surface area, or volume. Volume charge density is the quantity of charge per unit volume, measured in the SI system in coulombs per cubic meter (C⋅m−3), at any point in a volume. Surface charge density (σ) is the quantity of charge per unit area, measured in coulombs per square meter (C⋅m−2), at any point on a surface charge distribution on a two dimensional surface. Linear charge density (λ) is the quantity of charge per unit length, measured in coulombs per meter (C⋅m−1), at any point on a line charge distribution. Charge density can be either positive or negative, since electric charge can be either positive or negative.

<span class="mw-page-title-main">Maxwell stress tensor</span> Mathematical description in electromagnetism

The Maxwell stress tensor is a symmetric second-order tensor used in classical electromagnetism to represent the interaction between electromagnetic forces and mechanical momentum. In simple situations, such as a point charge moving freely in a homogeneous magnetic field, it is easy to calculate the forces on the charge from the Lorentz force law. When the situation becomes more complicated, this ordinary procedure can become impractically difficult, with equations spanning multiple lines. It is therefore convenient to collect many of these terms in the Maxwell stress tensor, and to use tensor arithmetic to find the answer to the problem at hand.

<span class="mw-page-title-main">Hamilton's principle</span> Formulation of the principle of stationary action

In physics, Hamilton's principle is William Rowan Hamilton's formulation of the principle of stationary action. It states that the dynamics of a physical system are determined by a variational problem for a functional based on a single function, the Lagrangian, which may contain all physical information concerning the system and the forces acting on it. The variational problem is equivalent to and allows for the derivation of the differential equations of motion of the physical system. Although formulated originally for classical mechanics, Hamilton's principle also applies to classical fields such as the electromagnetic and gravitational fields, and plays an important role in quantum mechanics, quantum field theory and criticality theories.

<span class="mw-page-title-main">Liénard–Wiechert potential</span> Electromagnetic effect of point charges

The Liénard–Wiechert potentials describe the classical electromagnetic effect of a moving electric point charge in terms of a vector potential and a scalar potential in the Lorenz gauge. Stemming directly from Maxwell's equations, these describe the complete, relativistically correct, time-varying electromagnetic field for a point charge in arbitrary motion, but are not corrected for quantum mechanical effects. Electromagnetic radiation in the form of waves can be obtained from these potentials. These expressions were developed in part by Alfred-Marie Liénard in 1898 and independently by Emil Wiechert in 1900.

<span class="mw-page-title-main">Coulomb's law</span> Fundamental physical law of electromagnetism

Coulomb's inverse-square law, or simply Coulomb's law, is an experimental law of physics that calculates the amount of force between two electrically charged particles at rest. This electric force is conventionally called electrostatic force or Coulomb force. Although the law was known earlier, it was first published in 1785 by French physicist Charles-Augustin de Coulomb. Coulomb's law was essential to the development of the theory of electromagnetism and maybe even its starting point, as it allowed meaningful discussions of the amount of electric charge in a particle.

<span class="mw-page-title-main">Electric dipole moment</span> Measure of positive and negative charges

The electric dipole moment is a measure of the separation of positive and negative electrical charges within a system, that is, a measure of the system's overall polarity. The SI unit for electric dipole moment is the coulomb-meter (C⋅m). The debye (D) is another unit of measurement used in atomic physics and chemistry.

References

  1. Debora M. Katz (1 January 2016). Physics for Scientists and Engineers: Foundations and Connections. Cengage Learning. pp. 1088–. ISBN   978-1-337-02634-5.