Workforce modeling

Last updated

Workforce modeling is the process by which the need for skilled workers at a particular point in time (demand) is matched directly with the availability and preference of skilled workers (supply). The resulting mathematical models may be used to perform sensitivity analysis and generate data output in the form of reports and schedules.

Contents

Due to the complexity level of building a workforce model, adoption of a workforce model is usually found in industries that have complex work rules, skilled or certified workers, medium to large teams of workers and fluctuating demand. Some examples include healthcare, public safety, and retail.

A workforce modeling solution can also refer to software that effectively captures all the complexity of a process from start to finish and delivers complete and correct results. Components include:

Definition

For a more detailed definition, the term must be differentiated from traditional staff scheduling. Staff scheduling is rooted in time management and encompasses the mere administration of past and future working times. However, during the last ten to fifteen years, this traditional approach has evolved towards a demand-oriented solution which, under economic aspects, also includes changes in personnel requirements and objectives when optimizing the scheduling of staff. Besides the two core aspects of demand orientation and optimization, workforce modeling also incorporates the forecast of the workload and the required staff, the integration of employees into the scheduling process through interactivity, the management of working times and accounts as well as analyzing and monitoring the entire process.

Workforce modeling solutions can, and should, be deployed enterprise-wide wherever complex scheduling needs or legal staffing ratios must be met. Due to the complex nature of a workforce model, creating one by hand is nearly impossible. By using a software solution for demand-oriented workforce management, planners can optimize staffing by creating schedules that at all times conform as closely as possible to the actual requirement. At the same time, a workforce modeling solution helps users to observe all relevant legislation, local agreements, and contracts with individual employees – including work-life balance guidelines.

Complexity of model

Many workforce modeling solution applications use the more common linear programming approach to create the Workforce Model. Linear methods of achieving a schedule are generally based on assumptions that demand is based on a series of independent events, all of which have a consistent, predictable outcome. [1] Although this method is very common, the results are in most cases not as complete or efficient. In general, they produce a resulting schedule that is up to 75% complete and leaves the scheduler to complete the remaining shift assignments.

Heuristics have been applied to the problem and metaheuristics has been identified as the best method for generating complex scheduling solutions. [2] Using this technique, many more solutions are available to the modeling process resulting in schedules that are not only closer to 100% complete but are also optimized to many different criteria at the same time. [1]

Notes

  1. 1 2 Clancy, Thomas R. Managing Organizational Complexity in Healthcare Operations. The Journal of Nursing Administration 38.9 (2008): 367-70. Print.
  2. Burke, Edmund, Patrick De Causmaecker, Greet Vanden Berghe, and Hendrik Van Landeghem. The State of the Art of Nurse Rostering Archived 2016-03-04 at the Wayback Machine . Journal of Scheduling 7.6 (2004): 441-99. Print.

Further reading

Related Research Articles

<span class="mw-page-title-main">Computer-aided manufacturing</span> Use of software to control industrial processes

Computer-aided manufacturing (CAM) also known as computer-aided modeling or computer-aided machining is the use of software to control machine tools in the manufacturing of work pieces. This is not the only definition for CAM, but it is the most common. It may also refer to the use of a computer to assist in all operations of a manufacturing plant, including planning, management, transportation and storage. Its primary purpose is to create a faster production process and components and tooling with more precise dimensions and material consistency, which in some cases, uses only the required amount of raw material, while simultaneously reducing energy consumption. CAM is now a system used in schools and lower educational purposes. CAM is a subsequent computer-aided process after computer-aided design (CAD) and sometimes computer-aided engineering (CAE), as the model generated in CAD and verified in CAE can be input into CAM software, which then controls the machine tool. CAM is used in many schools alongside CAD to create objects.

Constraint satisfaction problems (CSPs) are mathematical questions defined as a set of objects whose state must satisfy a number of constraints or limitations. CSPs represent the entities in a problem as a homogeneous collection of finite constraints over variables, which is solved by constraint satisfaction methods. CSPs are the subject of research in both artificial intelligence and operations research, since the regularity in their formulation provides a common basis to analyze and solve problems of many seemingly unrelated families. CSPs often exhibit high complexity, requiring a combination of heuristics and combinatorial search methods to be solved in a reasonable time. Constraint programming (CP) is the field of research that specifically focuses on tackling these kinds of problems. Additionally, the Boolean satisfiability problem (SAT), satisfiability modulo theories (SMT), mixed integer programming (MIP) and answer set programming (ASP) are all fields of research focusing on the resolution of particular forms of the constraint satisfaction problem.

Sociotechnical systems (STS) in organizational development is an approach to complex organizational work design that recognizes the interaction between people and technology in workplaces. The term also refers to coherent systems of human relations, technical objects, and cybernetic processes that inhere to large, complex infrastructures. Social society, and its constituent substructures, qualify as complex sociotechnical systems.

Staffing is the process of finding the right worker with appropriate qualifications or experience and recruiting them to fill a job position or role. Through this process, organizations acquire, deploy, and retain a workforce of sufficient quantity and quality to create positive impacts on the organization's effectiveness. In management, staffing is an operation of recruiting the employees by evaluating their skills and knowledge before offering them specific job roles accordingly.

<span class="mw-page-title-main">Multiple-criteria decision analysis</span> Operations research that evaluates multiple conflicting criteria in decision making

Multiple-criteria decision-making (MCDM) or multiple-criteria decision analysis (MCDA) is a sub-discipline of operations research that explicitly evaluates multiple conflicting criteria in decision making. It is also known as multiple attribute utility theory, multiple attribute value theory, multiple attribute preference theory, and multi-objective decision analysis.

Automated planning and scheduling, sometimes denoted as simply AI planning, is a branch of artificial intelligence that concerns the realization of strategies or action sequences, typically for execution by intelligent agents, autonomous robots and unmanned vehicles. Unlike classical control and classification problems, the solutions are complex and must be discovered and optimized in multidimensional space. Planning is also related to decision theory.

Field service management (FSM) refers to the management of a company's resources employed at or en route to the property of clients, rather than on company property. Examples include locating vehicles, managing worker activity, scheduling and dispatching work, ensuring driver safety, and integrating the management of such activities with inventory, billing, accounting and other back-office systems. FSM most commonly refers to companies who need to manage installation, service, or repairs of systems or equipment. It can also refer to software and cloud-based platforms that aid in field service management.

Workforce management (WFM) is an institutional process that maximizes performance levels and competency for an organization. The process includes all the activities needed to maintain a productive workforce, such as field service management, human resource management, performance and training management, data collection, recruiting, budgeting, forecasting, scheduling and analytics.

Competence is the set of demonstrable characteristics and skills that enable and improve the efficiency or performance of a job. Competency is a series of knowledge, abilities, skills, experiences and behaviors, which leads to effective performance in an individual's activities. Competency is measurable and can be developed through training.

<span class="mw-page-title-main">Workforce productivity</span> Concept in economics

Workforce productivity is the amount of goods and services that a group of workers produce in a given amount of time. It is one of several types of productivity that economists measure. Workforce productivity, often referred to as labor productivity, is a measure for an organisation or company, a process, an industry, or a country.

<span class="mw-page-title-main">Schedule</span> Planning of tasks and events

A schedule or a timetable, as a basic time-management tool, consists of a list of times at which possible tasks, events, or actions are intended to take place, or of a sequence of events in the chronological order in which such things are intended to take place. The process of creating a schedule — deciding how to order these tasks and how to commit resources between the variety of possible tasks — is called scheduling, and a person responsible for making a particular schedule may be called a scheduler. Making and following schedules is an ancient human activity.

Employee scheduling software automates the process of creating and maintaining a schedule. Automating the scheduling of employees increases productivity and allows organizations with hourly workforces to re-allocate resources to non-scheduling activities. Such software will usually track vacation time, sick time, compensation time, and alert when there are conflicts. As scheduling data is accumulated over time, it may be extracted for payroll or to analyze past activity. Although employee scheduling software may or may not make optimization decisions, it does manage and coordinate the tasks. Today's employee scheduling software often includes mobile applications. Mobile scheduling further increased scheduling productivity and eliminated inefficient scheduling steps. It may also include functionality including applicant tracking and on-boarding, time and attendance, and automatic limits on overtime. Such functionality can help organizations with issues like employee retention, compliance with labor laws, and other workforce management challenges.

<span class="mw-page-title-main">School timetable</span> Table for coordinating educational schedules at an institution

A school timetable is a calendar that coordinates students and teachers within the classrooms and time periods of the school day. Other factors include the class subjects and the type of classrooms available.

Multi-objective optimization or Pareto optimization is an area of multiple-criteria decision making that is concerned with mathematical optimization problems involving more than one objective function to be optimized simultaneously. Multi-objective is a type of vector optimization that has been applied in many fields of science, including engineering, economics and logistics where optimal decisions need to be taken in the presence of trade-offs between two or more conflicting objectives. Minimizing cost while maximizing comfort while buying a car, and maximizing performance whilst minimizing fuel consumption and emission of pollutants of a vehicle are examples of multi-objective optimization problems involving two and three objectives, respectively. In practical problems, there can be more than three objectives.

Customer analytics is a process by which data from customer behavior is used to help make key business decisions via market segmentation and predictive analytics. This information is used by businesses for direct marketing, site selection, and customer relationship management. Marketing provides services in order to satisfy customers. With that in mind, the productive system is considered from its beginning at the production level, to the end of the cycle at the consumer. Customer analytics plays an important role in the prediction of customer behavior.

Preferential bidding system (PBS) is a computer program for crew scheduling, a method of solving airlines workforce schedules consisting of specific flights and certain qualified crew members while allowing those crew members to request periodic work schedules using weighted preferences. The solution must be as efficient as possible while respecting crew member preferences, honoring seniority, conforming regulations, and operation coverage requirements.

Inventory management software is a software system for tracking inventory levels, orders, sales and deliveries. It can also be used in the manufacturing industry to create a work order, bill of materials and other production-related documents. Companies use inventory management software to avoid product overstock and outages. It is a tool for organizing inventory data that before was generally stored in hard-copy form or in spreadsheets.

SolveIT Software Pty Ltd is a provider of advanced planning and scheduling enterprise software for supply and demand optimisation and predictive modelling. Based in Adelaide, South Australia, 70% of its turnover is generated from software deployed in the mining and bulk material handling sectors.

Person–environment fit is the degree to which individual and environmental characteristics match. Person characteristics may include an individual's biological or psychological needs, values, goals, abilities, or personality, while environmental characteristics could include intrinsic and extrinsic rewards, demands of a job or role, cultural values, or characteristics of other individuals and collectives in the person's social environment. Due to its important implications in the workplace, person–environment fit has maintained a prominent position in Industrial and organizational psychology and related fields.

<span class="mw-page-title-main">Simulation-based optimization</span>

Simulation-based optimization integrates optimization techniques into simulation modeling and analysis. Because of the complexity of the simulation, the objective function may become difficult and expensive to evaluate. Usually, the underlying simulation model is stochastic, so that the objective function must be estimated using statistical estimation techniques.