Yang Shao-Horn | |
---|---|
Born | Yang Shao |
Education | Second High School Attached to Beijing Normal University |
Alma mater | Beijing University of Technology (BS) Michigan Technological University (PhD) |
Known for | Clean energy, electrochemistry, material chemistry and catalysis |
Awards | Faraday Medal |
Scientific career | |
Fields | Chemistry Materials Computation Spectroscopy Catalysis [1] |
Institutions | Massachusetts Institute of Technology |
Thesis | (1998) |
Doctoral students | Betar Gallant [2] |
Website | https://www.rle.mit.edu/eel/ |
Yang Shao-Horn is a Chinese American scholar, Professor of Mechanical Engineering [1] [3] [4] and Materials Science and Engineering [5] and a member of Research Laboratory of Electronics at the Massachusetts Institute of Technology. She is known for research on understanding and controlling of processes for storing electrons in chemical bonds towards zero-carbon energy and chemicals.
Shao-Horn was born in Beijing and was educated at Second High School Attached to Beijing Normal University. She obtained her B.S. in Metallurgical Engineering at Beijing University of Technology, [6] and moved to Michigan Technological University for graduate studies, where her Ph.D. research was focused on mechanistic investigations of Li-ion battery material failures using transmission electron microscopy, co-advised by Stephen A. Hackney [7] and M.M. Thackeray [8] at Argonne National Laboratory.
Upon the completion of her Ph.D. in 1998, Shao-Horn joined the Eveready Battery Company in Westlake, Ohio as a Staff Scientist, during which she researched high-voltage spinel materials for Li-ion batteries, [9] iron disulfide for lithium primary batteries [10] [11] and Alkaline Zn-MnO2 batteries. [12] Shao-Horn left Energizer in 2000 and obtained an NSF International Research Fellowship to work with Claude Delmas at the Institute of Condensed Matter Chemistry [13] in Bordeaux, France.
In 2002, she joined the MIT faculty. Shao-Horn's research is centered on exploiting physical/materials chemistry to understand and control the kinetics and dynamics for storing electrons in chemical bonds towards zero-carbon energy and chemicals. She is known for the use of surface electronic structure features and/or solvation environments to develop universal design principles of materials and electrode/electrolyte interface to enhance functions (activity, selectivity, and stability) spanning from making of sustainable chemicals and fuels, [14] via water splitting, [15] carbon dioxide, [16] to rechargeable Li-ion and Li-air batteries. [17]
She has pioneered the oxide electronic structure tuning to develop active catalysts to promote oxygen reduction and evolution kinetics. Shao-Horn and her collaborators have shown that the antibonding orbital filling of surface transition‑metal cations controls the catalytic activity of oxides for oxygen reduction [18] and oxygen evolution [19] in a volcano-shaped dependence over several orders of magnitude. Subsequently, Shao-Horn and her coworkers have shown that increasing the metal-oxygen covalency enhances activity for oxygen evolution but beyond an optimal value reduces oxide stability. [20] [21] Exploiting this concept not only sets record catalytic activity but also establishes a new reaction mechanism, where both metal and oxygen sites can catalyze oxygen evolution [22] and deprotonation from oxide the surface can be rate-limiting. [23] Moreover, such concepts have been applied to elucidate that increasing metal-oxygen covalency of metal oxides can promote the dehydrogenation of organic molecules such as carbonate solvents and electrolyte degradation by late transition metal oxides, which decreases the cycle life of Li-ion batteries [24] [25] [26] and selective oxidation of hydrocarbon fuels.
Shao-horn has given a number of lectures in academia (e.g. Marvel Lecture, Stanford ENERGY and Storage X 2021), at industrial events (e.g., BASF Energy Symposium 2015 [27] ) and high-level strategic meetings (e.g., Ideaslab of World Economic Forum in Davos). She has advised ~90 students and postdoctoral associates at MIT, who are now pursuing successful careers in industry, national research laboratories, and in academia (~30) including faculty positions at University of Michigan, MIT, Boston College, and Cornell and academic positions in Europe and Asia.
Shao-Horn was awarded the Charles W. Tobias Young Investigator Award 2008 for notable contributions to understanding the mechanism of Pt catalyst loss in fuel cells, which has contributed to prolonging the lifetime of fuel cells in consumer vehicles in collaboration with Hubert A. Gasteiger [28] and colleagues at GM, [29] [30] and to enhance oxygen reduction activity for Pt alloy catalysts in fuel cells. [31] [32] [33]
In 2018, Shao-Horn was awarded the Faraday Medal of Royal Society of Chemistry for her contributions to electrochemistry research, and she is the first woman receiving this recognition since its inception in 1977. [34] [35] In 2020, she was awarded the Dr. Karl Wamsler Innovation Award from the Technical University of Munich in appreciation of her visionary electrocatalysis research, developing universal guiding principles to understand and optimize charge transfer at the solid-gas and solid-liquid interface to store energy in chemical bonds. She is the first woman receiving this award since its inception in 2017. [36] She was selected to receive a Humbolt Prize in Chemistry from the Alexander von Humboldt Foundation for fundamental studies of interface at the Fritz Haber Institute.
Shao-Horn is a member of the U.S. National Academy of Engineering since 2018. She is a fellow of the American Association for the Advancement of Science, the Electrochemical Society, the National Academy of Inventors and the International Society of Electrochemistry. She serves as Senior Editor for Accounts of Materials Research of American Chemical Society (ACS), and on advisory/editorial boards of leading journals such as the Journal of Physical Chemistry in ACS, Energy and Environmental Science from Royal Society of Chemistry (RSC), Advanced Energy Materials and Advanced Functional Materials from Wiley, Materials Today, Chem, Cell Press Chem, and Joule from Elsevier, and the board of directors for International Meetings of Lithium batteries.
An electrochemical cell is a device that generates electrical energy from chemical reactions. Electrical energy can also be applied to these cells to cause chemical reactions to occur. Electrochemical cells that generate an electric current are called voltaic or galvanic cells and those that generate chemical reactions, via electrolysis for example, are called electrolytic cells.
A lithium-ion or Li-ion battery is a type of rechargeable battery that uses the reversible intercalation of Li+ ions into electronically conducting solids to store energy. In comparison with other commercial rechargeable batteries, Li-ion batteries are characterized by higher specific energy, higher energy density, higher energy efficiency, a longer cycle life, and a longer calendar life. Also noteworthy is a dramatic improvement in lithium-ion battery properties after their market introduction in 1991: over the following 30 years, their volumetric energy density increased threefold while their cost dropped tenfold.
A solid oxide fuel cell is an electrochemical conversion device that produces electricity directly from oxidizing a fuel. Fuel cells are characterized by their electrolyte material; the SOFC has a solid oxide or ceramic electrolyte.
A flow battery, or redox flow battery, is a type of electrochemical cell where chemical energy is provided by two chemical components dissolved in liquids that are pumped through the system on separate sides of a membrane. Ion transfer inside the cell occurs across the membrane while the liquids circulate in their respective spaces.
Electrolysis of water is using electricity to split water into oxygen and hydrogen gas by electrolysis. Hydrogen gas released in this way can be used as hydrogen fuel, but must be kept apart from the oxygen as the mixture would be extremely explosive. Separately pressurised into convenient 'tanks' or 'gas bottles', hydrogen can be used for oxyhydrogen welding and other applications, as the hydrogen / oxygen flame can reach approximately 2,800°C.
A protonic ceramic fuel cell or PCFC is a fuel cell based around a ceramic, solid, electrolyte material as the proton conductor from anode to cathode. These fuel cells produce electricity by removing an electron from a hydrogen atom, pushing the charged hydrogen atom through the ceramic membrane, and returning the electron to the hydrogen on the other side of the ceramic membrane during a reaction with oxygen. The reaction of many proposed fuels in PCFCs produce electricity and heat, the latter keeping the device at a suitable temperature. Efficient proton conductivity through most discovered ceramic electrolyte materials require elevated operational temperatures around 400-700 degrees Celsius, however intermediate temperature (200-400 degrees Celsius) ceramic fuel cells and lower temperature alternative are an active area of research. In addition to hydrogen gas, the ability to operate at intermediate and high temperatures enables the use of a variety of liquid hydrogen carrier fuels, including: ammonia, and methane. The technology shares the thermal and kinetic advantages of high temperature molten carbonate and solid oxide fuel cells, while exhibiting all of the intrinsic benefits of proton conduction in proton-exchange membrane fuel cells (PEMFC) and phosphoric acid fuel cells (PAFC). PCFCs exhaust water at the cathode and unused fuel, fuel reactant products and fuel impurities at the anode. Common chemical compositions of the ceramic membranes are barium zirconate (BaZrO3), barium cerate (BaCeO3), caesium dihydrogen phosphate (CsH2PO4), and complex solid solutions of those materials with other ceramic oxides. The acidic oxide ceramics are sometimes broken into their own class of protonic ceramic fuel cells termed "solid acid fuel cells".
Lithium cobalt oxide, sometimes called lithium cobaltate or lithium cobaltite, is a chemical compound with formula LiCoO
2. The cobalt atoms are formally in the +3 oxidation state, hence the IUPAC name lithium cobalt(III) oxide.
The electrochemical reduction of carbon dioxide, also known as CO2RR, is the conversion of carbon dioxide to more reduced chemical species using electrical energy. It represents one potential step in the broad scheme of carbon capture and utilization.
The lithium–air battery (Li–air) is a metal–air electrochemical cell or battery chemistry that uses oxidation of lithium at the anode and reduction of oxygen at the cathode to induce a current flow.
A metal–air electrochemical cell is an electrochemical cell that uses an anode made from pure metal and an external cathode of ambient air, typically with an aqueous or aprotic electrolyte.
Water oxidation is one of the half reactions of water splitting:
Alkaline water electrolysis is a type of electrolysis that is characterized by having two electrodes operating in a liquid alkaline electrolyte. Commonly, a solution of potassium hydroxide (KOH) or sodium hydroxide (NaOH) at 25-40 wt% is used. These electrodes are separated by a diaphragm, separating the product gases and transporting the hydroxide ions (OH−) from one electrode to the other. A recent comparison showed that state-of-the-art nickel based water electrolysers with alkaline electrolytes lead to competitive or even better efficiencies than acidic polymer electrolyte membrane water electrolysis with platinum group metal based electrocatalysts.
A lithium ion manganese oxide battery (LMO) is a lithium-ion cell that uses manganese dioxide, MnO
2, as the cathode material. They function through the same intercalation/de-intercalation mechanism as other commercialized secondary battery technologies, such as LiCoO
2. Cathodes based on manganese-oxide components are earth-abundant, inexpensive, non-toxic, and provide better thermal stability.
Magnesium batteries are batteries that utilize magnesium cations as charge carriers and possibly in the anode in electrochemical cells. Both non-rechargeable primary cell and rechargeable secondary cell chemistries have been investigated. Magnesium primary cell batteries have been commercialised and have found use as reserve and general use batteries.
Mixed conductors, also known as mixed ion-electron conductors(MIEC), are a single-phase material that has significant conduction ionically and electronically. Due to the mixed conduction, a formally neutral species can transport in a solid and therefore mass storage and redistribution are enabled. Mixed conductors are well known in conjugation with high-temperature superconductivity and are able to capacitate rapid solid-state reactions.
The electrochemical promotion of catalysis (EPOC) effect in the realm of chemistry refers to the pronounced enhancement of catalytic reactions or significant changes in the catalytic properties of a conductive catalyst in the presence of electrical currents or interfacial potentials. Also known as Non-faradaic electrochemical modification of catalytic activity (the NEMCA effect), it can increase in catalytic activity (up to 90-fold) and selectivity of a gas exposed electrode on a solid electrolyte cell upon application of a potential. This phenomenon is well documented and has been observed on various surfaces (Ni, Au, Pt, Pd, IrO2, RuO2) supported by O2−, Na+ and proton conducting solid electrolytes.
Larry A. Curtiss is an American chemist and researcher. He was born in Madison. WI. in 1947. He is a distinguished fellow and group leader of the Molecular Materials Group in the Materials Science Division at the U.S. Department of Energy's (DOE) Argonne National Laboratory. In addition, Curtiss is a senior investigator in the Joint Center for Energy Storage Research (JCESR), a DOE Energy Storage Hub, and was the deputy director of the Center for Electrochemical Energy Science, a DOE Energy Frontier Research Center.
Calcium (ion) batteries are energy storage and delivery technologies (i.e., electro–chemical energy storage) that employ calcium ions (cations), Ca2+, as the active charge carrier. Calcium (ion) batteries remain an active area of research, with studies and work persisting in the discovery and development of electrodes and electrolytes that enable stable, long-term battery operation. Calcium batteries are rapidly emerging as a recognized alternative to Li-ion technology due to their similar performance, significantly greater abundance, and lower cost.
Lithium nickel manganese cobalt oxides (abbreviated NMC, Li-NMC, LNMC, or NCM) are mixed metal oxides of lithium, nickel, manganese and cobalt with the general formula LiNixMnyCo1-x-yO2. These materials are commonly used in lithium-ion batteries for mobile devices and electric vehicles, acting as the positively charged cathode.
A solid-state electrolyte (SSE) is a solid ionic conductor and electron-insulating material and it is the characteristic component of the solid-state battery. It is useful for applications in electrical energy storage (EES) in substitution of the liquid electrolytes found in particular in lithium-ion battery. The main advantages are the absolute safety, no issues of leakages of toxic organic solvents, low flammability, non-volatility, mechanical and thermal stability, easy processability, low self-discharge, higher achievable power density and cyclability. This makes possible, for example, the use of a lithium metal anode in a practical device, without the intrinsic limitations of a liquid electrolyte thanks to the property of lithium dendrite suppression in the presence of a solid-state electrolyte membrane. The use of a high capacity anode and low reduction potential, like lithium with a specific capacity of 3860 mAh g−1 and a reduction potential of -3.04 V vs SHE, in substitution of the traditional low capacity graphite, which exhibits a theoretical capacity of 372 mAh g−1 in its fully lithiated state of LiC6, is the first step in the realization of a lighter, thinner and cheaper rechargeable battery. Moreover, this allows the reach of gravimetric and volumetric energy densities, high enough to achieve 500 miles per single charge in an electric vehicle. Despite the promising advantages, there are still many limitations that are hindering the transition of SSEs from academia research to large-scale production, depending mainly on the poor ionic conductivity compared to that of liquid counterparts. However, many car OEMs (Toyota, BMW, Honda, Hyundai) expect to integrate these systems into viable devices and to commercialize solid-state battery-based electric vehicles by 2025.