Yang Shao-Horn

Last updated
Yang Shao-Horn
Born
Yang Shao
Education Second High School Attached to Beijing Normal University
Alma mater Beijing University of Technology (BS)
Michigan Technological University (PhD)
Known forClean energy, electrochemistry, material chemistry and catalysis
Awards Faraday Medal
Scientific career
Fields Chemistry
Materials
Computation
Spectroscopy
Catalysis [1]
Institutions Massachusetts Institute of Technology
Thesis  (1998)
Doctoral students Betar Gallant [2]
Website https://www.rle.mit.edu/eel/

Yang Shao-Horn is a Chinese American scholar, Professor of Mechanical Engineering [1] [3] [4] and Materials Science and Engineering [5] and a member of Research Laboratory of Electronics at the Massachusetts Institute of Technology. She is known for research on understanding and controlling of processes for storing electrons in chemical bonds towards zero-carbon energy and chemicals.

Contents

Education

Shao-Horn was born in Beijing and was educated at Second High School Attached to Beijing Normal University. She obtained her B.S. in Metallurgical Engineering at Beijing University of Technology, [6] and moved to Michigan Technological University for graduate studies, where her Ph.D. research was focused on mechanistic investigations of Li-ion battery material failures using transmission electron microscopy, co-advised by Stephen A. Hackney [7] and M.M. Thackeray [8] at Argonne National Laboratory.

Research and career

Upon the completion of her Ph.D. in 1998, Shao-Horn joined the Eveready Battery Company in Westlake, Ohio as a Staff Scientist, during which she researched high-voltage spinel materials for Li-ion batteries, [9] iron disulfide for lithium primary batteries [10] [11] and Alkaline Zn-MnO2 batteries. [12] Shao-Horn left Energizer in 2000 and obtained an NSF International Research Fellowship to work with Claude Delmas at the Institute of Condensed Matter Chemistry [13] in Bordeaux, France.

In 2002, she joined the MIT faculty. Shao-Horn's research is centered on exploiting physical/materials chemistry to understand and control the kinetics and dynamics for storing electrons in chemical bonds towards zero-carbon energy and chemicals. She is known for the use of surface electronic structure features and/or solvation environments to develop universal design principles of materials and electrode/electrolyte interface to enhance functions (activity, selectivity, and stability) spanning from making of sustainable chemicals and fuels, [14] via water splitting, [15] carbon dioxide, [16] to rechargeable Li-ion and Li-air batteries. [17]

She has pioneered the oxide electronic structure tuning to develop active catalysts to promote oxygen reduction and evolution kinetics. Shao-Horn and her collaborators have shown that the antibonding orbital filling of surface transition‑metal cations controls the catalytic activity of oxides for oxygen reduction [18] and oxygen evolution [19] in a volcano-shaped dependence over several orders of magnitude. Subsequently, Shao-Horn and her coworkers have shown that increasing the metal-oxygen covalency enhances activity for oxygen evolution but beyond an optimal value reduces oxide stability. [20] [21] Exploiting this concept not only sets record catalytic activity but also establishes a new reaction mechanism, where both metal and oxygen sites can catalyze oxygen evolution [22] and deprotonation from oxide the surface can be rate-limiting. [23] Moreover, such concepts have been applied to elucidate that increasing metal-oxygen covalency of metal oxides can promote the dehydrogenation of organic molecules such as carbonate solvents and electrolyte degradation by late transition metal oxides, which decreases the cycle life of Li-ion batteries [24] [25] [26] and selective oxidation of hydrocarbon fuels.

Shao-horn has given a number of lectures in academia (e.g. Marvel Lecture, Stanford ENERGY and Storage X 2021), at industrial events (e.g., BASF Energy Symposium 2015 [27] ) and high-level strategic meetings (e.g., Ideaslab of World Economic Forum in Davos). She has advised ~90 students and postdoctoral associates at MIT, who are now pursuing successful careers in industry, national research laboratories, and in academia (~30) including faculty positions at University of Michigan, MIT and Cornell and academic positions in Europe and Asia.

Awards and honors

Shao-Horn was awarded the Charles W. Tobias Young Investigator Award 2008 for notable contributions to understanding the mechanism of Pt catalyst loss in fuel cells, which has contributed to prolonging the lifetime of fuel cells in consumer vehicles in collaboration with Hubert A. Gasteiger [28] and colleagues at GM, [29] [30] and to enhance oxygen reduction activity for Pt alloy catalysts in fuel cells. [31] [32] [33]

In 2018, Shao-Horn was awarded the Faraday Medal of Royal Society of Chemistry for her contributions to electrochemistry research, and she is the first woman receiving this recognition since its inception in 1977. [34] [35] In 2020, she was awarded the Dr. Karl Wamsler Innovation Award from the Technical University of Munich in appreciation of her visionary electrocatalysis research, developing universal guiding principles to understand and optimize charge transfer at the solid-gas and solid-liquid interface to store energy in chemical bonds. She is the first woman receiving this award since its inception in 2017. [36] She was selected to receive a Humbolt Prize in Chemistry from the Alexander von Humboldt Foundation for fundamental studies of interface at the Fritz Haber Institute.

Shao-Horn is a member of the U.S. National Academy of Engineering since 2018. She is a fellow of the American Association for the Advancement of Science, the Electrochemical Society, the National Academy of Inventors and the International Society of Electrochemistry. She serves as Senior Editor for Accounts of Materials Research of American Chemical Society (ACS), and on advisory/editorial boards of leading journals such as the Journal of Physical Chemistry in ACS, Energy and Environmental Science from Royal Society of Chemistry (RSC), Advanced Energy Materials and Advanced Functional Materials from Wiley, Materials Today, Chem, Cell Press Chem, and Joule from Elsevier, and the board of directors for International Meetings of Lithium batteries.

Selected bibliography

  1. T. Wang, Y. Zhang, B. Huang, B. Cai, R.R.  Rao, L. Giordano, S.G. Sun and Y. Shao-Horn, Enhancing the Catalysis of Oxygen Reduction Reaction via Tuning Interfacial Hydrogen Bonds, Nature Catalysis, 4, 753-762, September 2021.
  2. H. Iriawan, S.Z. Andersen, X. Zhang, B. M. Comer, J. Barrio, P. Chen, A.J. Medford, I.E.L. Stephens, I. Chorkendorff and Y. Shao-Horn, Methods for nitrogen activation by reduction and oxidation, Nature Reviews Methods Primers, 1, 56, August 2021.
  3. B. Huang, R.R. Rao, S. You, K. H. Myint, Y. Song, Y. Wang, W. Ding, L. Giordano, Y. Zhang, T. Wang, S. Muy, Y. Katayama, J. C. Grossman, A. P. Willard, K. Xu, Y. Jiang and Y. Shao-Horn, Cation- and pH-Dependent Hydrogen Evolution and Oxidation Reaction Kinetics, Journal of the American Chemical Society Au, 14, 6030-6040, August 2021.
  4. J. Hwang, R.R. Rao, L. Giordano, K. Akkiraju, X.R. Wang, E. Crumlin and Y. Shao-Horn, Regulating oxygen activity of perovskites to promote NOx oxidation, Nature Catalysis, 4, 663-673, July 2021.
  5. R.R. Rao, M.J. Kolb, L. Giordano, A. F. Pederson, Y. Katayama, J. Hwang, A. Mehta, H. You, J.R. Lunger, H. Zhou, N.B. Halck, T. Vegge, I. Chorkendorff, I.E.L. Stephens, and Y. Shao-Horn, Operando Identification of Site-Dependent Water Oxidation Activity on Ruthenium Dioxide Single-Crystal Surfaces, Nature Catalysis, 3, 516-525, May 2020.
  6. Y. Zhang, Y. Katayama, R. Tatara, L. Giordano, Y. Yu, D. Fraggedakis, J. Sun, F. Maglia, R. Jung, M.Z. Bazant and Y. Shao-Horn, Revealing Electrolyte Oxidation via Carbonate Dehydrogenation on Ni-based Oxides in Li-ion Batteries by in situ Fourier Transform Infrared Spectroscopy, Energy and Environmental Science, 13, 183-199, November 2019.
  7. B.J. Hopkins, Y. Shao-Horn, and D. P. Hart, Suppressing Corrosion In Primary Aluminum–Air Batteries Via Oil Displacement, Science, 362, 658-661, November 2018.
  8. J. Hwang, R.R. Rao, L. Giordano, Y. Katayama, Y. Yu, and Y. Shao-Horn, Perovskites in Catalysis and Electrocatalysis, Science, 358, 751-756, November 2017.
  9. W. Hong, K.A. Stoerzinger, Y-L. Lee, L. Giordano, A.J.L. Grimaud, A.M. Johnson, J. Hwang, E. Crumlin, W. Yang, Y. Shao-Horn, Charge-transfer-energy-dependent oxygen evolution reaction mechanisms for perovskite oxides, Energy & Environmental Science, 10, 2190-2200, October 2017.
  10. L. Giordano, P. Karayaylali, Y. Yu, Y. Katayama, F. Maglia, S. Lux, and Y. Shao-Horn, Chemical Reactivity Descriptor for the Oxide-Electrolyte Interface in Li-Ion Batteries, Journal of Physical Chemistry Letters, 8, 3881-3887, August 2017.
  11. W. Hong, K.A. Stoerzinger, Y-L. Lee, L. Giordano, A.J.L. Grimaud, A.M. Johnson, J. Hwang, E. Crumlin, W. Yang, Y. Shao-Horn, Charge-transfer-energy-dependent oxygen evolution reaction mechanisms for perovskite oxides, Energy & Environmental Science, 10, 2190-2200, October 2017.
  12. L. Giordano, P. Karayaylali, Y. Yu, Y. Katayama, F. Maglia, S. Lux, and Y. Shao-Horn, Chemical Reactivity Descriptor for the Oxide-Electrolyte Interface in Li-Ion Batteries, Journal of Physical Chemistry Letters, 8, 3881-3887, August 2017.
  13.  J. Bachman, S. Muy, Grimaud, A., H.H. Chang, N. Pour, S. Lux, O. Paschos, F. Maglia, S. Lupart, P. Lamp, L. Giordano and Y. Shao-Horn, Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction, Chemical Reviews, 116, 140-162, January 2016.
  14. D. Kwabi, V.S. Bryantsev, T.P. Batcho, D. Itkis, C.V. Thompson and Y. Shao-Horn, Experimental and Computational Analysis of the Solvent-Dependent O2/Li+-O2- Redox Couple: Standard Potentials, Coupling Strength and Implications for Lithium-Oxygen Batteries, Angewandte Chemie International Edition, 128, 3181-3186, February 2016.
  15. W.T. Hong, K.A. Stoerzinger, B. Mortiz, T.P. Devereaux, W.Yang, and Y. Shao-Horn, Probing LaMO3 Metal and Oxygen Partial Density of States Using X-ray Emission, Absorption, and Photoelectron Spectroscopy, Journal of Physical Chemistry C, 119, 2063-2072, 2015.
  16. B. Han, C.E. Carlton, A. Kongkanand, R.S. Kukreja, B.R.C. Theobald, L. Gan, R. O'Malley, P. Strasser, F.T. Wagner, and Y. Shao-Horn, Record Activity and Stability of Dealloyed Bimetallic Catalysts for Proton Exchange Membrane Fuel Cells, Energy & Environmental Science, 8, 258-266, 2015.
  17. J. Suntivich, K.J. May, H.A. Gasteiger, J.B. Goodenough and Y. Shao-Horn, A Perovskite Oxide Optimized for Oxygen Evolution Catalysis from Molecular Orbital Principles, Science, 334, 1383-1385, 2011.
  18. P.J. Ferreira, G.J. la O’, Y. Shao-Horn, D. Morgan, R. Makharia, S. Kocha and H. Gasteiger, Instability of Pt/C Electrocatalysts in Proton Exchange Membrane Fuel Cells: A Mechanistic Investigation, Journal of the Electrochemical Society, 152, A2256–A2271, 2005.

Related Research Articles

<span class="mw-page-title-main">Electrochemical cell</span> Electro-chemical device

An electrochemical cell is a device that generates electrical energy from chemical reactions. Electrical energy can also be applied to these cells to cause chemical reactions to occur. Electrochemical cells which generate an electric current are called voltaic or galvanic cells and those that generate chemical reactions, via electrolysis for example, are called electrolytic cells.

<span class="mw-page-title-main">Lithium-ion battery</span> Rechargeable battery type

A lithium-ion or Li-ion battery is a type of rechargeable battery which uses the reversible intercalation of Li+ ions into electronically conducting solids to store energy. In comparison with other rechargeable batteries, Li-ion batteries are characterized by a higher specific energy, higher energy density, higher energy efficiency, longer cycle life and longer calendar life. Also noteworthy is a dramatic improvement in lithium-ion battery properties after their market introduction in 1991: within the next 30 years their volumetric energy density increased threefold, while their cost dropped tenfold.

<span class="mw-page-title-main">Solid oxide fuel cell</span> Fuel cell that produces electricity by oxidization

A solid oxide fuel cell is an electrochemical conversion device that produces electricity directly from oxidizing a fuel. Fuel cells are characterized by their electrolyte material; the SOFC has a solid oxide or ceramic electrolyte.

<span class="mw-page-title-main">Flow battery</span> Type of electrochemical cell

A flow battery, or redox flow battery, is a type of electrochemical cell where chemical energy is provided by two chemical components dissolved in liquids that are pumped through the system on separate sides of a membrane. Ion transfer inside the cell occurs through the membrane while both liquids circulate in their own respective space. Cell voltage is chemically determined by the Nernst equation and ranges, in practical applications, from 1.0 to 2.43 volts. The energy capacity is a function of the electrolyte volume and the power is a function of the surface area of the electrodes.

<span class="mw-page-title-main">Electrolysis of water</span> Electricity-induced chemical reaction

Electrolysis of water is using electricity to split water into oxygen and hydrogen gas by electrolysis. Hydrogen gas released in this way can be used as hydrogen fuel, but must be kept apart from the oxygen as the mixture would be extremely explosive. Separately pressurised into convenient 'tanks' or 'gas bottles', hydrogen can be used for oxyhydrogen welding and other applications, as the hydrogen / oxygen flame can reach approximately 2,800°C.

The electrochemical window (EW) of a substance is the electrode electric potential range between which the substance is neither oxidized nor reduced. The EW is one of the most important characteristics to be identified for solvents and electrolytes used in electrochemical applications. The EW is a term that is commonly used to indicate the potential range and the potential difference. It is calculated by subtracting the reduction potential from the oxidation potential.

<span class="mw-page-title-main">Lithium cobalt oxide</span> Chemical compound

Lithium cobalt oxide, sometimes called lithium cobaltate or lithium cobaltite, is a chemical compound with formula LiCoO
2
. The cobalt atoms are formally in the +3 oxidation state, hence the IUPAC name lithium cobalt(III) oxide.

The electrochemical reduction of carbon dioxide, also known as CO2RR, is the conversion of carbon dioxide to more reduced chemical species using electrical energy. It represents one potential step in the broad scheme of carbon capture and utilization.

The lithium–air battery (Li–air) is a metal–air electrochemical cell or battery chemistry that uses oxidation of lithium at the anode and reduction of oxygen at the cathode to induce a current flow.

A metal–air electrochemical cell is an electrochemical cell that uses an anode made from pure metal and an external cathode of ambient air, typically with an aqueous or aprotic electrolyte.

Water oxidation is one of the half reactions of water splitting:

A lithium ion manganese oxide battery (LMO) is a lithium-ion cell that uses manganese dioxide, MnO
2
, as the cathode material. They function through the same intercalation/de-intercalation mechanism as other commercialized secondary battery technologies, such as LiCoO
2
. Cathodes based on manganese-oxide components are earth-abundant, inexpensive, non-toxic, and provide better thermal stability.

<span class="mw-page-title-main">Mixed conductor</span>

Mixed conductors, also known as mixed ion-electron conductors(MIEC), are a single-phase material that has significant conduction ionically and electronically. Due to the mixed conduction, a formally neutral species can transport in a solid and therefore mass storage and redistribution are enabled. Mixed conductors are well known in conjugation with high-temperature superconductivity and are able to capacitate rapid solid-state reactions.

Maximilian Fichtner is professor for Solid State Chemistry at the Ulm University and executive director of the Helmholtz Institute Ulm for Electrochemical Energy Storage (HIU).

Karen Chan is an associate professor at the Technical University of Denmark. She is a Canadian and French physicist most notable for her work on catalysis, electrocatalysis, and electrochemical reduction of carbon dioxide.

The electrochemical promotion of catalysis (EPOC) effect in the realm of chemistry refers to the pronounced enhancement of catalytic reactions or significant changes in the catalytic properties of a conductive catalyst in the presence of electrical currents or interfacial potentials. Also known as Non-faradaic electrochemical modification of catalytic activity (the NEMCA effect), it can increase in catalytic activity (up to 90-fold) and selectivity of a gas exposed electrode on a solid electrolyte cell upon application of a potential. This phenomenon is well documented and has been observed on various surfaces (Ni, Au, Pt, Pd, IrO2, RuO2) supported by O2−, Na+ and proton conducting solid electrolytes.

Larry A. Curtiss is an American chemist and researcher. He is a distinguished fellow and group leader of the Molecular Materials Group in the Materials Science Division at the U.S. Department of Energy’s (DOE) Argonne National Laboratory. In addition, Curtiss is a senior investigator in the Joint Center for Energy Storage Research (JCESR), a DOE Energy Storage Hub, and was the deputy director of the Center for Electrochemical Energy Science, a DOE Energy Frontier Research Center.

Calcium (ion) batteries are energy storage and delivery technologies (i.e., electro–chemical energy storage) that employ calcium ions (cations), Ca2+, as the active charge carrier in the electrolytes as well as in the electrodes (anode and cathode). Calcium (ion) batteries remain an active area of research, with studies and work persisting in the discovery and development of electrodes and electrolytes that enable stable, long-term battery operation.

<span class="mw-page-title-main">Lithium nickel manganese cobalt oxides</span> Lithium ion battery cathode material

Lithium nickel manganese cobalt oxides (abbreviated NMC, Li-NMC, LNMC, or NCM) are mixed metal oxides of lithium, nickel, manganese and cobalt with the general formula LiNixMnyCo1-x-yO2. These materials are commonly used in lithium-ion batteries for mobile devices and electric vehicles, acting as the positively charged cathode.

<span class="mw-page-title-main">Solid-state electrolyte</span>

A solid-state electrolyte (SSE) is a solid ionic conductor and electron-insulating material and it is the characteristic component of the solid-state battery. It is useful for applications in electrical energy storage (EES) in substitution of the liquid electrolytes found in particular in lithium-ion battery. The main advantages are the absolute safety, no issues of leakages of toxic organic solvents, low flammability, non-volatility, mechanical and thermal stability, easy processability, low self-discharge, higher achievable power density and cyclability. This makes possible, for example, the use of a lithium metal anode in a practical device, without the intrinsic limitations of a liquid electrolyte thanks to the property of lithium dendrite suppression in the presence of a solid-state electrolyte membrane. The use of a high capacity anode and low reduction potential, like lithium with a specific capacity of 3860 mAh g−1 and a reduction potential of -3.04 V vs SHE, in substitution of the traditional low capacity graphite, which exhibits a theoretical capacity of 372 mAh g−1 in its fully lithiated state of LiC6, is the first step in the realization of a lighter, thinner and cheaper rechargeable battery. Moreover, this allows the reach of gravimetric and volumetric energy densities, high enough to achieve 500 miles per single charge in an electric vehicle. Despite the promising advantages, there are still many limitations that are hindering the transition of SSEs from academia research to large-scale production, depending mainly on the poor ionic conductivity compared to that of liquid counterparts. However, many car OEMs (Toyota, BMW, Honda, Hyundai) expect to integrate these systems into viable devices and to commercialize solid-state battery-based electric vehicles by 2025.

References

  1. 1 2 Yang Shao-Horn publications indexed by Google Scholar OOjs UI icon edit-ltr-progressive.svg
  2. Gallant, Betar (2010). Layer-by-layer assembled carbon nanotube nanostructures for high-power and high-energy lithium storage. mit.edu (PhD thesis). Massachusetts Institute of Technology. hdl:1721.1/61864. OCLC   704797011.
  3. Yang Shao-Horn publications from Europe PubMed Central
  4. "Faculty | Electrochemical Energy Laboratory".
  5. "Yang Shao-Horn | MIT DMSE".
  6. Yang Shao Horn | Anonymous but Curious , retrieved 2021-03-24
  7. "Stephen A. Hackney | Materials Science and Engineering | Michigan Technological University". www.mtu.edu. Retrieved 2021-03-24.
  8. "Michael M. Thackeray | Argonne National Laboratory". www.anl.gov. Retrieved 2021-03-24.
  9. Shao-Horn, Yang; Middaugh, Richard L. (2001-01-02). "Redox reactions of cobalt, aluminum and titanium substituted lithium manganese spinel compounds in lithium cells". Solid State Ionics. 139 (1): 13–25. doi:10.1016/S0167-2738(00)00817-1. ISSN   0167-2738.
  10. Shao-Horn, Yang; Osmialowski, Steve; Horn, Quinn C. (2002). "Nano-FeS[sub 2] for Commercial Li/FeS[sub 2] Primary Batteries". Journal of the Electrochemical Society. 149 (11): A1499. doi:10.1149/1.1513558. ISSN   0013-4651.
  11. Shao-Horn, Yang; Osmialowski, Steve; Horn, Quinn C. (2002). "Reinvestigation of Lithium Reaction Mechanisms in FeS[sub 2] Pyrite at Ambient Temperature". Journal of the Electrochemical Society. 149 (12): A1547. doi:10.1149/1.1516772. ISSN   0013-4651.
  12. Horn, Quinn C.; Shao-Horn, Yang (2003). "Morphology and Spatial Distribution of ZnO Formed in Discharged Alkaline Zn/MnO[sub 2] AA Cells". Journal of the Electrochemical Society. 150 (5): A652. doi:10.1149/1.1566014. ISSN   0013-4651.
  13. "ICMCB - Welcome - ICMCB - Institut de Chimie de la Matière Condensée de Bordeaux".
  14. Hwang, Jonathan; Rao, Reshma R.; Giordano, Livia; Katayama, Yu; Yu, Yang; Shao-Horn, Yang (2017-11-10). "Perovskites in catalysis and electrocatalysis". Science. 358 (6364): 751–756. Bibcode:2017Sci...358..751H. doi: 10.1126/science.aam7092 . ISSN   0036-8075. PMID   29123062.
  15. "Materials Cloud". www.materialscloud.org. Retrieved 2021-03-24.
  16. Khan, Sami; Hwang, Jonathan; Horn, Yang-Shao; Varanasi, Kripa K. (February 2021). "Catalyst-proximal plastrons enhance activity and selectivity of carbon dioxide electroreduction". Cell Reports Physical Science. 2 (2): 100318. Bibcode:2021CRPS....200318K. doi: 10.1016/j.xcrp.2020.100318 .
  17. Rechargeable Li Batteries | Yang Shao-Horn | StorageX Symposium , retrieved 2021-03-24
  18. Suntivich, Jin; Gasteiger, Hubert A.; Yabuuchi, Naoaki; Nakanishi, Haruyuki; Goodenough, John B.; Shao-Horn, Yang (July 2011). "Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal–air batteries". Nature Chemistry. 3 (7): 546–550. Bibcode:2011NatCh...3..546S. doi:10.1038/nchem.1069. ISSN   1755-4330. PMID   21697876.
  19. Suntivich, J.; May, K. J.; Gasteiger, H. A.; Goodenough, J. B.; Shao-Horn, Y. (2011-12-09). "A Perovskite Oxide Optimized for Oxygen Evolution Catalysis from Molecular Orbital Principles". Science. 334 (6061): 1383–1385. Bibcode:2011Sci...334.1383S. doi: 10.1126/science.1212858 . ISSN   0036-8075. PMID   22033519. S2CID   206537028.
  20. May, Kevin J.; Carlton, Christopher E.; Stoerzinger, Kelsey A.; Risch, Marcel; Suntivich, Jin; Lee, Yueh-Lin; Grimaud, Alexis; Shao-Horn, Yang (2012-11-15). "Influence of Oxygen Evolution during Water Oxidation on the Surface of Perovskite Oxide Catalysts". The Journal of Physical Chemistry Letters. 3 (22): 3264–3270. doi:10.1021/jz301414z.
  21. Grimaud, Alexis; May, Kevin J.; Carlton, Christopher E.; Lee, Yueh-Lin; Risch, Marcel; Hong, Wesley T.; Zhou, Jigang; Shao-Horn, Yang (2013-09-17). "Double perovskites as a family of highly active catalysts for oxygen evolution in alkaline solution". Nature Communications. 4 (1): 2439. Bibcode:2013NatCo...4.2439G. doi: 10.1038/ncomms3439 . ISSN   2041-1723. PMID   24042731.
  22. Grimaud, Alexis; Diaz-Morales, Oscar; Han, Binghong; Hong, Wesley T.; Lee, Yueh-Lin; Giordano, Livia; Stoerzinger, Kelsey A.; Koper, Marc T. M.; Shao-Horn, Yang (May 2017). "Activating lattice oxygen redox reactions in metal oxides to catalyse oxygen evolution". Nature Chemistry. 9 (5): 457–465. Bibcode:2017NatCh...9..457G. doi:10.1038/nchem.2695. hdl: 1887/3191990 . ISSN   1755-4349. PMID   28430191. S2CID   31604130.
  23. Hong, Wesley T.; Stoerzinger, Kelsey A.; Lee, Yueh-Lin; Giordano, Livia; Grimaud, Alexis; Johnson, Alyssa M.; Hwang, Jonathan; Crumlin, Ethan J.; Yang, Wanli; Shao-Horn, Yang (2017-10-11). "Charge-transfer-energy-dependent oxygen evolution reaction mechanisms for perovskite oxides". Energy & Environmental Science. 10 (10): 2190–2200. doi:10.1039/C7EE02052J. ISSN   1754-5706.
  24. Giordano, Livia; Karayaylali, Pinar; Yu, Yang; Katayama, Yu; Maglia, Filippo; Lux, Simon; Shao-Horn, Yang (2017-08-17). "Chemical Reactivity Descriptor for the Oxide-Electrolyte Interface in Li-Ion Batteries". The Journal of Physical Chemistry Letters. 8 (16): 3881–3887. doi:10.1021/acs.jpclett.7b01655. hdl: 10281/299066 . OSTI   1484008. PMID   28766340.
  25. Yu, Yang; Karayaylali, Pinar; Katayama, Yu; Giordano, Livia; Gauthier, Magali; Maglia, Filippo; Jung, Roland; Lund, Isaac; Shao-Horn, Yang (2018-12-06). "Coupled LiPF6 Decomposition and Carbonate Dehydrogenation Enhanced by Highly Covalent Metal Oxides in High-Energy Li-Ion Batteries". The Journal of Physical Chemistry C. 122 (48): 27368–27382. doi:10.1021/acs.jpcc.8b07848. ISSN   1932-7447. OSTI   1543653. S2CID   104574841.
  26. Zhang, Yirui; Katayama, Yu; Tatara, Ryoichi; Giordano, Livia; Yu, Yang; Fraggedakis, Dimitrios; Sun, Jame Guangwen; Maglia, Filippo; Jung, Roland; Bazant, Martin Z.; Shao-Horn, Yang (2020). "Revealing electrolyte oxidation via carbonate dehydrogenation on Ni-based oxides in Li-ion batteries by in situ Fourier transform infrared spectroscopy". Energy & Environmental Science. 13 (1): 183–199. doi: 10.1039/C9EE02543J . ISSN   1754-5692.
  27. "Smart energy for a sustainable future". www.basf.com. Retrieved 2021-03-24.
  28. "TUM Professoren - Gasteiger_Hubert". www.professoren.tum.de. Retrieved 2021-03-24.
  29. Ferreira, P. J.; la O', G. J.; Shao-Horn, Y.; Morgan, D.; Makharia, R.; Kocha, S.; Gasteiger, H. A. (2005). "Instability of Pt/C Electrocatalysts in Proton Exchange Membrane Fuel Cells". Journal of the Electrochemical Society. 152 (11): A2256. doi: 10.1149/1.2050347 . ISSN   0013-4651.
  30. Chen, Shuo; Gasteiger, Hubert A.; Hayakawa, Katsuichiro; Tada, Tomoyuki; Shao-Horn, Yang (2010). "Platinum-Alloy Cathode Catalyst Degradation in Proton Exchange Membrane Fuel Cells: Nanometer-Scale Compositional and Morphological Changes". Journal of the Electrochemical Society. 157 (1): A82. doi:10.1149/1.3258275. hdl: 1721.1/79691 . ISSN   0013-4651.
  31. Chen, Shuo; Ferreira, Paulo J.; Sheng, Wenchao; Yabuuchi, Naoaki; Allard, Lawrence F.; Shao-Horn, Yang (2008-10-22). "Enhanced Activity for Oxygen Reduction Reaction on "Pt3Co" Nanoparticles: Direct Evidence of Percolated and Sandwich-Segregation Structures". Journal of the American Chemical Society. 130 (42): 13818–13819. doi:10.1021/ja802513y. ISSN   0002-7863. PMID   18811156.
  32. Chen, Shuo; Sheng, Wenchao; Yabuuchi, Naoaki; Ferreira, Paulo J.; Allard, Lawrence F.; Shao-Horn, Yang (2009-01-22). "Origin of Oxygen Reduction Reaction Activity on "Pt3Co" Nanoparticles: Atomically Resolved Chemical Compositions and Structures". The Journal of Physical Chemistry C. 113 (3): 1109–1125. doi:10.1021/jp807143e. ISSN   1932-7447.
  33. Han, Binghong; Carlton, Christopher E.; Kongkanand, Anusorn; Kukreja, Ratandeep S.; Theobald, Brian R.; Gan, Lin; O'Malley, Rachel; Strasser, Peter; Wagner, Frederick T.; Shao-Horn, Yang (2015). "Record activity and stability of dealloyed bimetallic catalysts for proton exchange membrane fuel cells". Energy & Environmental Science. 8 (1): 258–266. doi:10.1039/C4EE02144D. hdl: 1721.1/97720 . ISSN   1754-5692. S2CID   67836581.
  34. "RSC Electrochemistry Interest Group". click.rsc.org. Retrieved 2021-03-24.
  35. "Faraday and Roger Parsons Medals of the Royal Society of Chemistry". ECS. 2018-11-29. Retrieved 2021-03-24.
  36. "Dr. Karl Wamsler Innovation Award". TUM. Retrieved 2021-03-24.
  37. "Delivering life-saving oxygen | MIT Department of Mechanical Engineering". meche.mit.edu. Retrieved 2021-03-25.
  38. "Study unveils details of how a widely used catalyst splits water". MIT News | Massachusetts Institute of Technology. Retrieved 2021-03-25.
  39. "Researchers clarify mystery about proposed battery material". MIT News | Massachusetts Institute of Technology. Retrieved 2021-03-25.