Yao graph

Last updated

Yao graph.svg

In computational geometry, the Yao graph, named after Andrew Yao, is a kind of geometric spanner, a weighted undirected graph connecting a set of geometric points with the property that, for every pair of points in the graph, their shortest path has a length that is within a constant factor of their Euclidean distance.

Computational geometry is a branch of computer science devoted to the study of algorithms which can be stated in terms of geometry. Some purely geometrical problems arise out of the study of computational geometric algorithms, and such problems are also considered to be part of computational geometry. While modern computational geometry is a recent development, it is one of the oldest fields of computing with history stretching back to antiquity.

Andrew Yao Taiwanese American computer scientist

Andrew Chi-Chih Yao is a Chinese computer scientist and computational theorist. He is currently a Professor and the Dean of Institute for Interdisciplinary Information Sciences (IIIS) at Tsinghua University. Yao used the minimax theorem to prove what is now known as Yao's Principle.

A geometric spanner or a t-spanner graph or a t-spanner was initially introduced as a weighted graph over a set of points as its vertices for which there is a t-path between any pair of vertices for a fixed parameter t. A t-path is defined as a path through the graph with weight at most t times the spatial distance between its endpoints. The parameter t is called the stretch factor or dilation factor of the spanner.

Contents

The basic idea underlying the two-dimensional Yao graph is to surround each of the given points by equally spaced rays, partitioning the plane into sectors with equal angles, and to connect each point to its nearest neighbor in each of these sectors. [1] Associated with a Yao graph is an integer parameter k ≥ 6 which is the number of rays and sectors described above; larger values of k produce closer approximations to the Euclidean distance. [2] The stretch factor is at most , where is the angle of the sectors. [3] The same idea can be extended to point sets in more than two dimensions, but the number of sectors required grows exponentially with the dimension.

Nearest neighbor graph type of directed graph

The nearest neighbor graph (NNG) for a set of n objects P in a metric space is a directed graph with P being its vertex set and with a directed edge from p to q whenever q is a nearest neighbor of p.

In mathematics, the stretch factor of an embedding measures the factor by which the embedding distorts distances. Suppose that one metric space S is embedded into another metric space T by a metric map, a continuous one-to-one function f that preserves or reduces the distance between every pair of points. Then the embedding gives rise to two different notions of distance between pairs of points in S. Any pair of points (x,y) in S has both an intrinsic distance, the distance from x to y in S, and a smaller extrinsic distance, the distance from f(x) to f(y) in T. The stretch factor of the pair is the ratio between these two distances, d(x,y)/d(f ,f ). The stretch factor of the whole mapping is the supremum of the stretch factors of all pairs of points. The stretch factor has also been called the distortion or dilation of the mapping.

Andrew Yao used these graphs to construct high-dimensional Euclidean minimum spanning trees. [3]

Euclidean minimum spanning tree the shortest network collecting a given set of points in the plane

The Euclidean minimum spanning tree or EMST is a minimum spanning tree of a set of n points in the plane, where the weight of the edge between each pair of points is the Euclidean distance between those two points. In simpler terms, an EMST connects a set of dots using lines such that the total length of all the lines is minimized and any dot can be reached from any other by following the lines.

Software for drawing Yao graphs

See also

Related Research Articles

Angle figure formed by two rays; coordinate system in one-dimensional space or The amount of turn between two straight lines that have a common end point (the vertex).

In plane geometry, an angle is the figure formed by two rays, called the sides of the angle, sharing a common endpoint, called the vertex of the angle. Angles formed by two rays lie in a plane, but this plane does not have to be a Euclidean plane. Angles are also formed by the intersection of two planes in Euclidean and other spaces. These are called dihedral angles. Angles formed by the intersection of two curves in a plane are defined as the angle determined by the tangent rays at the point of intersection. Similar statements hold in space, for example, the spherical angle formed by two great circles on a sphere is the dihedral angle between the planes determined by the great circles.

Cartesian coordinate system coordinate system

A Cartesian coordinate system is a coordinate system that specifies each point uniquely in a plane by a set of numerical coordinates, which are the signed distances to the point from two fixed perpendicular oriented lines, measured in the same unit of length. Each reference line is called a coordinate axis or just axis of the system, and the point where they meet is its origin, at ordered pair (0, 0). The coordinates can also be defined as the positions of the perpendicular projections of the point onto the two axes, expressed as signed distances from the origin.

2D computer graphics graphics that use a two-dimensional representation of geometric data

2D computer graphics is the computer-based generation of digital images—mostly from two-dimensional models and by techniques specific to them.The word may stand for the branch of computer science that comprises such techniques or for the models themselves.

Elliptic geometry

Elliptic geometry is a geometry in which Euclid's parallel postulate does not hold. Elliptic geometry is studied in two, three, or more dimensions. The appearance of this geometry in the nineteenth century stimulated the development of non-Euclidean geometry generally, including hyperbolic geometry.

Rotation (mathematics) concept originating in geometry; motion of a certain space that preserves at least one point

Rotation in mathematics is a concept originating in geometry. Any rotation is a motion of a certain space that preserves at least one point. It can describe, for example, the motion of a rigid body around a fixed point. A rotation is different from other types of motions: translations, which have no fixed points, and (hyperplane) reflections, each of them having an entire (n − 1)-dimensional flat of fixed points in a n-dimensional space. A clockwise rotation is a negative magnitude so a counterclockwise turn has a positive magnitude.

In geometry, two-dimensional rotations and reflections are two kinds of Euclidean plane isometries which are related to one another.

Line (geometry) straight object with negligible width and depth

The notion of line or straight line was introduced by ancient mathematicians to represent straight objects with negligible width and depth. Lines are an idealization of such objects. Until the 17th century, lines were defined as the "[…] first species of quantity, which has only one dimension, namely length, without any width nor depth, and is nothing else than the flow or run of the point which […] will leave from its imaginary moving some vestige in length, exempt of any width. […] The straight line is that which is equally extended between its points."

In computational geometry, the Theta graph, or -graph, is a type of geometric spanner similar to a Yao graph. The basic method of construction involves partitioning the space around each vertex into a set of cones, which themselves partition the remaining vertices of the graph. Like Yao Graphs, a -graph contains at most one edge per cone; where they differ is how that edge is selected. Whereas Yao Graphs will select the nearest vertex according to the metric space of the graph, the -graph defines a fixed ray contained within each cone and selects the nearest neighbor with respect to orthogonal projections to that ray. The resulting graph exhibits several good spanner properties.

Geometric graph theory

Geometric graph theory in the broader sense is a large and amorphous subfield of graph theory, concerned with graphs defined by geometric means. In a stricter sense, geometric graph theory studies combinatorial and geometric properties of geometric graphs, meaning graphs drawn in the Euclidean plane with possibly intersecting straight-line edges, and topological graphs, where the edges are allowed to be arbitrary continuous curves connecting the vertices, thus it is "the theory of geometric and topological graphs".

Clifford torus

In geometric topology, the Clifford torus is the simplest and most symmetric Euclidean space embedding of the cartesian product of two circles S1a and S1b. It is named after William Kingdon Clifford. It resides in R4, as opposed to in R3. To see why R4 is necessary, note that if S1a and S1b each exist in their own independent embedding spaces R2a and R2b, the resulting product space will be R4 rather than R3. The historically popular view that the cartesian product of two circles is an R3 torus in contrast requires the highly asymmetric application of a rotation operator to the second circle, since that circle will only have one independent axis z available to it after the first circle consumes x and y.

In geometry, a plane of rotation is an abstract object used to describe or visualize rotations in space. In three dimensions it is an alternative to the axis of rotation, but unlike the axis of rotation it can be used in other dimensions, such as two, four or more dimensions.

Beta skeleton

In computational geometry and geometric graph theory, a β-skeleton or beta skeleton is an undirected graph defined from a set of points in the Euclidean plane. Two points p and q are connected by an edge whenever all the angles prq are sharper than a threshold determined from the numerical parameter β.

In geometry, a fat object is an object in two or more dimensions, whose lengths in the different dimensions are similar. For example, a square is fat because its length and width are identical. A 2-by-1 rectangle is thinner than a square, but it is fat relative to a 10-by-1 rectangle. Similarly, a circle is fatter than a 1-by-10 ellipse and an equilateral triangle is fatter than a very obtuse triangle.

Hyperbolic geometric graph generalization of random geometric graph to hyperbolic space

A hyperbolic geometric graph (HGG) or hyperbolic geometric network (HGN) is a special type of spatial network where (1) latent coordinates of nodes are sprinkled according to a probability density function into a hyperbolic space of constant negative curvature and (2) an edge between two nodes is present if they are close according to a function of the metric. A HGG generalizes a random geometric graph (RGG) whose embedding space is Euclidean.

The k-semi-Yao graph (k-SYG) of a set of n objects P is a geometric proximity graph, which was first described to present a kinetic data structure for maintenance of all the nearest neighbors on moving objects. It is named for its relation to the Yao graph, which is named after Andrew Yao.

The concept of angles between lines in the plane and between pairs of two lines, two planes or a line and a plane in space can be generalized to arbitrary dimension. This generalization was first discussed by Jordan. For any pair of flats in a Euclidean space of arbitrary dimension one can define a set of mutual angles which are invariant under isometric transformation of the Euclidean space. If the flats do not intersect, their shortest distance is one more invariant. These angles are called canonical or principal. The concept of angles can be generalized to pairs of flats in a finite-dimensional inner product space over the complex numbers.

In mathematics, the Erdős–Ulam problem asks whether the plane contains a dense set of points whose Euclidean distances are all rational numbers. It is named after Paul Erdős and Stanislaw Ulam.

In computational geometry, a greedy geometric spanner is an undirected graph whose vertices represent points in a Euclidean space, and whose edges are selected by a greedy algorithm to make the shortest path distances in the graph approximate the Euclidean distances between pairs of points. The construction of greedy spanners was first published by Althöfer et al. in 1993; their paper also credited Marshall Bern (unpublished) with the independent discovery of the same construction.

References

  1. "Overlay Networks for Wireless Systems" (PDF).
  2. "Simple Topologies" (PDF).
  3. 1 2 Yao, A. C. (1982), "On constructing minimum spanning trees in k-dimensional space and related problems", SIAM Journal on Computing , 11 (4): 721–736, CiteSeerX   10.1.1.626.3161 , doi:10.1137/0211059 .