Yariv reagent

Last updated
Yariv reagent
Yariv reagent.svg
Yariv reagent. Three example R groups shown: β-D-Galactose (βGal), β-D-Glucose (βGlc), β-D-Mannose (βMan).
Identifiers
3D model (JSmol)
PubChem CID
  • alpha-Galactosyl:InChI=1S/C42H48N6O21/c49-13-22-28(52)34(58)37(61)40(67-22)64-19-7-1-16(2-8-19)43-46-25-31(55)26(47-44-17-3-9-20(10-4-17)65-41-38(62)35(59)29(53)23(14-50)68-41)33(57)27(32(25)56)48-45-18-5-11-21(12-6-18)66-42-39(63)36(60)30(54)24(15-51)69-42/h1-12,22-24,28-30,34-44,49-54,56,58-63H,13-15H2/t22-,23-,24-,28+,29+,30+,34+,35+,36+,37-,38-,39-,40+,41+,42+/m1/s1
    Key: CDYGCPPQERMCPE-LKQUKSTNSA-N
  • beta-Glucosyl:InChI=1S/C42H48N6O21/c49-13-22-28(52)34(58)37(61)40(67-22)64-19-7-1-16(2-8-19)43-46-25-31(55)26(47-44-17-3-9-20(10-4-17)65-41-38(62)35(59)29(53)23(14-50)68-41)33(57)27(32(25)56)48-45-18-5-11-21(12-6-18)66-42-39(63)36(60)30(54)24(15-51)69-42/h1-12,22-24,28-30,34-44,49-54,56,58-63H,13-15H2/t22-,23-,24-,28-,29-,30-,34+,35+,36+,37-,38-,39-,40-,41-,42-/m1/s1
    Key: CDYGCPPQERMCPE-DTYGZFTESA-N
  • alpha-Galactosyl:C1=CC(=CC=C1NN=C2C(=C(C(=O)C(=NNC3=CC=C(C=C3)O[C@@H]4[C@@H]([C@H]([C@H]([C@H](O4)CO)O)O)O)C2=O)N=NC5=CC=C(C=C5)O[C@@H]6[C@@H]([C@H]([C@H]([C@H](O6)CO)O)O)O)O)O[C@@H]7[C@@H]([C@H]([C@H]([C@H](O7)CO)O)O)O
  • beta-Glucosyl:C1=CC(=CC=C1NN=C2C(=C(C(=O)C(=NNC3=CC=C(C=C3)O[C@H]4[C@@H]([C@H]([C@@H]([C@H](O4)CO)O)O)O)C2=O)N=NC5=CC=C(C=C5)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O)O)O[C@H]7[C@@H]([C@H]([C@@H]([C@H](O7)CO)O)O)O
Properties
C42H48N6O21
Molar mass 972.867 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Infobox references

Yariv reagent (1,3,5-tri(p-glycosyloxyphenylazo)-2,4,6-trihydroxybenzene) is a glycosylated phenolic compound that binds strongly to galactans and arabinogalactan proteins. [1] [2] [3] It can therefore be used in their detection, quantification, precipitation, isolation, staining, and interfere with their function. [3] [4] It was initially synthesised in 1962 as an antigen for carbohydrate-binding antibodies but has subsequently become more broadly used. [1] [5] There are many variants of Yariv reagents which vary in the glycosyl groups on the outside of the structure, typically glucose, galactose, and mannose. [6]

The biographical article about Joseph Yariv was published by the Journal of Applied Crystallography . [7]

Related Research Articles

Antibody Protein(s) forming a major part of an organisms immune system

An antibody (Ab), also known as an immunoglobulin (Ig), is a large, Y-shaped protein used by the immune system to identify and neutralize foreign objects such as pathogenic bacteria and viruses. The antibody recognizes a unique molecule of the pathogen, called an antigen. Each tip of the "Y" of an antibody contains a paratope that is specific for one particular epitope on an antigen, allowing these two structures to bind together with precision. Using this binding mechanism, an antibody can tag a microbe or an infected cell for attack by other parts of the immune system, or can neutralize it directly.

ELISA Method to detect an antigen using an antibody and enzyme

The enzyme-linked immunosorbent assay (ELISA) is a commonly used analytical biochemistry assay, first described by Eva Engvall and Peter Perlmann in 1971. The assay uses a solid-phase type of enzyme immunoassay (EIA) to detect the presence of a ligand in a liquid sample using antibodies directed against the protein to be measured. ELISA has been used as a diagnostic tool in medicine, plant pathology, and biotechnology, as well as a quality control check in various industries.

Glycoprotein Protein with oligosaccharide modifications

Glycoproteins are proteins which contain oligosaccharide chains (glycans) covalently attached to amino acid side-chains. The carbohydrate is attached to the protein in a cotranslational or posttranslational modification. This process is known as glycosylation. Secreted extracellular proteins are often glycosylated.

Western blot Analytical technique used in molecular biology

The western blot, or western blotting, is a widely used analytical technique in molecular biology and immunogenetics to detect specific proteins in a sample of tissue homogenate or extract.

Cellulase Class of enzymes

Cellulase is any of several enzymes produced chiefly by fungi, bacteria, and protozoans that catalyze cellulolysis, the decomposition of cellulose and of some related polysaccharides. The name is also used for any naturally occurring mixture or complex of various such enzymes, that act serially or synergistically to decompose cellulosic material.

In biochemistry, biotinylation is the process of covalently attaching biotin to a protein, nucleic acid or other molecule. Biotinylation is rapid, specific and is unlikely to disturb the natural function of the molecule due to the small size of biotin. Biotin binds to streptavidin and avidin with an extremely high affinity, fast on-rate, and high specificity, and these interactions are exploited in many areas of biotechnology to isolate biotinylated molecules of interest. Biotin-binding to streptavidin and avidin is resistant to extremes of heat, pH and proteolysis, making capture of biotinylated molecules possible in a wide variety of environments. Also, multiple biotin molecules can be conjugated to a protein of interest, which allows binding of multiple streptavidin, avidin or neutravidin protein molecules and increases the sensitivity of detection of the protein of interest. There is a large number of biotinylation reagents available that exploit the wide range of possible labelling methods. Due to the strong affinity between biotin and streptavidin, the purification of biotinylated proteins has been a widely used approach to identify protein-protein interactions and post-translational events such as ubiquitylation in molecular biology.

Glycolipid Class of chemical compounds

Glycolipids are lipids with a carbohydrate attached by a glycosidic (covalent) bond. Their role is to maintain the stability of the cell membrane and to facilitate cellular recognition, which is crucial to the immune response and in the connections that allow cells to connect to one another to form tissues. Glycolipids are found on the surface of all eukaryotic cell membranes, where they extend from the phospholipid bilayer into the extracellular environment.

Immunoassay Biochemical test for a protein or other molecule using an antibody

An immunoassay (IA) is a biochemical test that measures the presence or concentration of a macromolecule or a small molecule in a solution through the use of an antibody (usually) or an antigen (sometimes). The molecule detected by the immunoassay is often referred to as an "analyte" and is in many cases a protein, although it may be other kinds of molecules, of different sizes and types, as long as the proper antibodies that have the required properties for the assay are developed. Analytes in biological liquids such as serum or urine are frequently measured using immunoassays for medical and research purposes.

Affinity chromatography is a method of separating a biomolecule from a mixture, based on a highly specific macromolecular binding interaction between the biomolecule and another substance. The specific type of binding interaction depends on the biomolecule of interest; antigen and antibody, enzyme and substrate, receptor and ligand, or protein and nucleic acid binding interactions are frequently exploited for isolation of various biomolecules. Affinity chromatography is useful for its high selectivity and resolution of separation, compared to other chromatographic methods.

Protein tags are peptide sequences genetically grafted onto a recombinant protein. Often these tags are removable by chemical agents or by enzymatic means, such as proteolysis or intein splicing. Tags are attached to proteins for various purposes. They can be added to either end of the target protein, so they are either C-terminus or N-terminus specific or are both C-terminus and N-terminus specific. Some tags are also inserted into the coding sequence of the protein of interest; they are known as internal tags.

The terms glycan and polysaccharide are defined by IUPAC as synonyms meaning "compounds consisting of a large number of monosaccharides linked glycosidically". However, in practice the term glycan may also be used to refer to the carbohydrate portion of a glycoconjugate, such as a glycoprotein, glycolipid, or a proteoglycan, even if the carbohydrate is only an oligosaccharide. Glycans usually consist solely of O-glycosidic linkages of monosaccharides. For example, cellulose is a glycan composed of β-1,4-linked D-glucose, and chitin is a glycan composed of β-1,4-linked N-acetyl-D-glucosamine. Glycans can be homo- or heteropolymers of monosaccharide residues, and can be linear or branched.

Arabinogalactan is a biopolymer consisting of arabinose and galactose monosaccharides. Two classes of arabinogalactans are found in nature: plant arabinogalactan and microbial arabinogalactan. In plants, it is a major component of many gums, including gum arabic and gum ghatti. It is often found attached to proteins, and the resulting arabinogalactan protein (AGP) functions as both an intercellular signaling molecule and a glue to seal plant wounds.

Hemagglutinin

In molecular biology, hemagglutinin is a glycoprotein which causes red blood cells (RBCs) to agglutinate or clump together. This is one of three steps in the more complex process of coagulation.

The eastern blot, or eastern blotting, is a biochemical technique used to analyze protein post-translational modifications including the addition of lipids, phosphates, and glycoconjugates. It is most often used to detect carbohydrate epitopes. Thus, eastern blot can be considered an extension of the biochemical technique of western blot. Multiple techniques have been described by the term "eastern blot(ting)", most use phosphoprotein blotted from sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE) gel on to a polyvinylidene fluoride or nitrocellulose membrane. Transferred proteins are analyzed for post-translational modifications using probes that may detect lipids, carbohydrate, phosphorylation or any other protein modification. Eastern blotting should be used to refer to methods that detect their targets through specific interaction of the post-translational modifications and the probe, distinguishing them from a standard far-western blot. In principle, eastern blotting is similar to lectin blotting.

Carbohydrate–protein interactions are the intermolecular and intramolecular interactions between protein and carbohydrate moieties. These interactions form the basis of specific recognition of carbohydrates by lectins. Carbohydrates are important biopolymers and have a variety of functions. Often carbohydrates serve a function as a recognition element. That is, they are specifically recognized by other biomolecules. Proteins which bind carbohydrate structures are known as lectins. Compared to the study of protein–protein and protein–DNA interaction, it is relatively recent that scientists get to know the protein–carbohydrate binding.

Arabinogalactan-proteins (AGPs) are highly glycosylated proteins (glycoproteins) found in the cell walls of plants. Each one consists of a protein with sugar molecules attached. They are members of the wider class of hydroxyproline (Hyp)-rich cell wall glycoproteins, a large and diverse group of glycosylated wall proteins.

Synthetic antibodies are affinity reagents generated entirely in vitro, thus completely eliminating animals from the production process. Synthetic antibodies include recombinant antibodies, nucleic acid aptamers and non-immunoglobulin protein scaffolds. As a consequence of their in vitro manufacturing method the antigen recognition site of synthetic antibodies can be engineered to any desired target and may extend beyond the typical immune repertoire offered by natural antibodies. Synthetic antibodies are being developed for use in research, diagnostic and therapeutic applications. Synthetic antibodies can be used in all applications where traditional monoclonal or polyclonal antibodies are used and offer many inherent advantages over animal-derived antibodies, including comparatively low production costs, reagent reproducibility and increased affinity, specificity and stability across a range of experimental conditions.

Affimer

Affimer molecules are small proteins that bind to target proteins with affinity in the nanomolar range. These engineered non-antibody binding proteins are designed to mimic the molecular recognition characteristics of monoclonal antibodies in different applications. These affinity reagents have been optimized to increase their stability, make them tolerant to a range of temperatures and pH, reduce their size, and to increase their expression in E.coli and mammalian cells.

Glycan-protein interactions Class of biological intermolecular interactions

Glycan-Protein interactions represent a class of biomolecular interactions that occur between free or protein-bound glycans and their cognate binding partners. Intramolecular glycan-protein (protein-glycan) interactions occur between glycans and proteins that they are covalently attached to. Together with protein-protein interactions, they form a mechanistic basis for many essential cell processes, especially for cell-cell interactions and host-cell interactions. For instance, SARS-CoV-2, the causative agent of COVID-19, employs its extensively glycosylated spike (S) protein to bind to the ACE2 receptor, allowing it to enter host cells. The spike protein is a trimeric structure, with each subunit containing 22 N-glycosylation sites, making it an attractive target for vaccine search.

Tracey Maureen Gloster is a chemist at the University of St Andrews UK. Her research interests are in structural biology, chemical biology, glycobiology and carbohydrate processing enzymes.

References

  1. 1 2 B S Paulsen; David J Craik; Dave E. Dunstan; B A Stone; A Bacic (20 January 2014). "The Yariv reagent: behaviour in different solvents and interaction with a gum arabic arabinogalactan-protein". Carbohydrate Polymers. 106: 460–468. doi:10.1016/J.CARBPOL.2014.01.009. ISSN   0144-8617. PMID   24721102. Wikidata   Q30798155.
  2. Esther M Göllner; Wolfgang Blaschek; Birgit Classen (1 March 2010). "Structural investigations on arabinogalactan-protein from wheat, isolated with Yariv reagent". Journal of Agricultural and Food Chemistry . 58 (6): 3621–3626. doi:10.1021/JF903843F. ISSN   0021-8561. PMID   20163180. Wikidata   Q33531883.
  3. 1 2 Kiminari Kitazawa; Theodora Tryfona; Yoshihisa Yoshimi; et al. (7 January 2013). "β-galactosyl Yariv reagent binds to the β-1,3-galactan of arabinogalactan proteins". Plant Physiology . 161 (3): 1117–1126. doi:10.1104/PP.112.211722. ISSN   0032-0889. PMC   3585584 . PMID   23296690. Wikidata   Q38318749.
  4. A Chapman; A S Blervacq; J Vasseur; J L Hilbert (1 August 2000). "Arabinogalactan-proteins in Cichorium somatic embryogenesis: effect of beta-glucosyl Yariv reagent and epitope localisation during embryo development". Planta . 211 (3): 305–314. doi:10.1007/S004250000299. ISSN   0032-0935. PMID   10987548. Wikidata   Q74315380.
  5. YARIV J; RAPPORT MM; GRAF L (1 November 1962). "The interaction of glycosides and saccharides with antibody to the corresponding phenylazo glycosides". Biochemical Journal . 85: 383–388. doi:10.1042/BJ0850383. ISSN   0264-6021. PMC   1243744 . PMID   14002491. Wikidata   Q42554063.
  6. "Yariv reagents for detection and quantitation of arabinogalactan-proteins" (PDF). Biosupplies Australia. Archived (PDF) from the original on 2021-01-16. Retrieved 2021-01-16.
  7. John R. Helliwell and Yariv family, "Joseph Yariv (1927–2021)", Journal of Applied Crystallography , Volume 54| Part 3| June 2021| Pages 1025-1026, doi : 10.1107/S1600576721004453