Z-pinning

Last updated
Z-pin inserted between the fibres of a composite Z-Pin in Composite.jpg
Z-pin inserted between the fibres of a composite

Z-pinning is a technique to insert reinforcing fibres (also called Z-pins or Z-fibres) along the Z-direction of continuous fibre-reinforced plastics. [1] Z-pins can be made of metal or precured unidirectional composite fibres. It is designed for use within pre-preg technology; there is extensive experimental evidence that Z-pinning dramatically improves the resistance of the composite structure to delamination. [2] The figure on the right shows a Z-pin inserted in between the fibres of the material. The pin spreads the fibres and creates an oval shaped gap that is filled with resin. The Z-pin prevents the composite from delamination. When a load is applied the cracks will typically form along the line of the opening. [3]

Contents

Benefits

Z-pinning is a versatile technique that can be applied to many materials that will benefit from added strength and durability. They are especially effective when used in materials that are subject to delamination, because the Z-pins can counteract this problem. [4] Z-pinning has been used in aircraft manufacturing to add strength. [5] By Z-pinning the materials on an aircraft, such as the wings, it can have a much higher resistance to damage during flight. Also, if the aircraft does suffer from a minor crack, the Z-pinning will prevent it from catastrophic failure. Z-pins can also be used for automotive applications. The pins can be inserted into carbon fibre parts to increase the strength of them. If the front splitter of a car was constructed with Z-pins, it would be able to withstand significantly more impacts because the Z-pins would hold it together even with a minor crack. This allows the carbon fibre parts to remain light while still being strong. [6] Testing of different size Z-pins has indicated that larger pins lead to an increase in strength. A 1% increase in the size of the Z-pin increases toughness by up to 6 to 25 times. However, too large of a pin can disrupts the fibres of the material more leading to it fracturing. [7]

Z-Pin production

There are many methods of creating Z-pins. Typically, Z-pins are pre-cured and then inserted into composites. One process consists of pulling a continuous-fibre tow through a bath of liquid resin using a pultrusion machine. The fibre is then pulled out of the bath through the die which creates the shape and size of the pin. The pin is next sandwiched in a vertical orientation in foam to finish the process. The pin may be coated or treated as an additional step depending on the application. This process is one of the more efficient and cost effective ways of producing Z-pins because it can be easily adapted to different pin sizes. [7] [8]

Manufacturing with Z-Pins

Z-pins have many ways of being inserted into the material of choice. The most common method is a process using an ultrasonic hammer. The hammer compresses the foam that encases the pins and pushes the pins into the material. The hammer induces high frequency vibrations to the pin as it compresses. The vibrating chamfered tip of the Z-pins locally heats up and softens the resin allowing the Z-fibre to penetrate the preform with minimal disruption of the long fibres. The remaining pin and laminate above the surface are removed to create a smooth and even surface The surface can be finished with a coating to seal the Z-pins inside the material. [3] A hand-held ultrasonic gun can also be used to insert Z-pins on a small scale production. This is ideal for testing materials containing Z-pins because they can be easily inserted into any location on the material. [7]

See also

Related Research Articles

<span class="mw-page-title-main">Composite material</span> Material made from a combination of two or more unlike substances

A composite material is a material which is produced from two or more constituent materials. These constituent materials have notably dissimilar chemical or physical properties and are merged to create a material with properties unlike the individual elements. Within the finished structure, the individual elements remain separate and distinct, distinguishing composites from mixtures and solid solutions. Composite materials with more than one distinct layer are called composite laminates.

Fiberglass or fibreglass is a common type of fiber-reinforced plastic using glass fiber. The fibers may be randomly arranged, flattened into a sheet called a chopped strand mat, or woven into glass cloth. The plastic matrix may be a thermoset polymer matrix—most often based on thermosetting polymers such as epoxy, polyester resin, or vinyl ester resin—or a thermoplastic.

<span class="mw-page-title-main">Thermosetting polymer</span> Polymer obtained by irreversibly hardening (curing) a resin

In materials science, a thermosetting polymer, often called a thermoset, is a polymer that is obtained by irreversibly hardening ("curing") a soft solid or viscous liquid prepolymer (resin). Curing is induced by heat or suitable radiation and may be promoted by high pressure or mixing with a catalyst. Heat is not necessarily applied externally, and is often generated by the reaction of the resin with a curing agent. Curing results in chemical reactions that create extensive cross-linking between polymer chains to produce an infusible and insoluble polymer network.

<span class="mw-page-title-main">Lamination</span> Technique of fusing layers of material

Lamination is the technique/process of manufacturing a material in multiple layers, so that the composite material achieves improved strength, stability, sound insulation, appearance, or other properties from the use of the differing materials, such as plastic. A laminate is a layered object or material assembled using heat, pressure, welding, or adhesives. Various coating machines, machine presses and calendering equipment are used.

Fibre-reinforced plastic is a composite material made of a polymer matrix reinforced with fibres. The fibres are usually glass, carbon, aramid, or basalt. Rarely, other fibres such as paper, wood, boron, or asbestos have been used. The polymer is usually an epoxy, vinyl ester, or polyester thermosetting plastic, though phenol formaldehyde resins are still in use.

<span class="mw-page-title-main">Delamination</span> Mode of failure for which a material fractures into layers

Delamination is a mode of failure where a material fractures into layers. A variety of materials, including laminate composites and concrete, can fail by delamination. Processing can create layers in materials, such as steel formed by rolling and plastics and metals from 3D printing which can fail from layer separation. Also, surface coatings, such as paints and films, can delaminate from the coated substrate.

<span class="mw-page-title-main">Self-healing material</span> Substances that can repair themselves

Self-healing materials are artificial or synthetically created substances that have the built-in ability to automatically repair damages to themselves without any external diagnosis of the problem or human intervention. Generally, materials will degrade over time due to fatigue, environmental conditions, or damage incurred during operation. Cracks and other types of damage on a microscopic level have been shown to change thermal, electrical, and acoustical properties of materials, and the propagation of cracks can lead to eventual failure of the material. In general, cracks are hard to detect at an early stage, and manual intervention is required for periodic inspections and repairs. In contrast, self-healing materials counter degradation through the initiation of a repair mechanism that responds to the micro-damage. Some self-healing materials are classed as smart structures, and can adapt to various environmental conditions according to their sensing and actuation properties.

<span class="mw-page-title-main">Fiberglass spray lay-up process</span>

Spray-Up also known as chop method of creating fiberglass objects by spraying short strands of glass out of a pneumatic gun. This method is used often when one side of the finished product is not seen, or when large quantities of a product must be made cheaply and quickly with moderate strength requirements. Corvette fenders and boat dinghies are commonly manufactured this way.

Fiber volume ratio is an important mathematical element in composite engineering. Fiber volume ratio, or fiber volume fraction, is the percentage of fiber volume in the entire volume of a fiber-reinforced composite material. When manufacturing polymer composites, fibers are impregnated with resin. The amount of resin to fiber ratio is calculated by the geometric organization of the fibers, which affects the amount of resin that can enter the composite. The impregnation around the fibers is highly dependent on the orientation of the fibers and the architecture of the fibers. The geometric analysis of the composite can be seen in the cross-section of the composite. Voids are often formed in a composite structure throughout the manufacturing process and must be calculated into the total fiber volume fraction of the composite. The fraction of fiber reinforcement is very important in determining the overall mechanical properties of a composite. A higher fiber volume fraction typically results in better mechanical properties of the composite.

A thermoset polymer matrix is a synthetic polymer reinforcement where polymers act as binder or matrix to secure in place incorporated particulates, fibres or other reinforcements. They were first developed for structural applications, such as glass-reinforced plastic radar domes on aircraft and graphite-epoxy payload bay doors on the Space Shuttle.

Carbon fiber-reinforced polymers, carbon-fibre-reinforced polymers, carbon-fiber-reinforced plastics, carbon-fiber reinforced-thermoplastic, also known as carbon fiber, carbon composite, or just carbon, are extremely strong and light fiber-reinforced plastics that contain carbon fibers. CFRPs can be expensive to produce, but are commonly used wherever high strength-to-weight ratio and stiffness (rigidity) are required, such as aerospace, superstructures of ships, automotive, civil engineering, sports equipment, and an increasing number of consumer and technical applications.

In the field of composite materials, tufting is an experimental technology to locally reinforce continuous fibre-reinforced plastics along the z-direction, with the objective of enhancing the shear and delamination resistance of the structure.

Three-dimensional composites use fiber preforms constructed from yarns or tows arranged into complex three-dimensional structures. These can be created from a 3D weaving process, a 3D knitting process, a 3D braiding process, or a 3D lay of short fibers. A resin is applied to the 3D preform to create the composite material. Three-dimensional composites are used in highly engineered and highly technical applications in order to achieve complex mechanical properties. Three-dimensional composites are engineered to react to stresses and strains in ways that are not possible with traditional composite materials composed of single direction tows, or 2D woven composites, sandwich composites or stacked laminate materials.

Composite repairs are performed on damaged laminate structures, fibre reinforced composites and other composite materials. The bonded composite repair reduces stresses in the damaged region and prevents cracks from opening or growing. Composite materials are used in a wide range of applications in aerospace, marine, automotive, surface transport and sports equipment markets. Damage to composite components is not always visible to the naked eye and the extent of damage is best determined for structural components by suitable Non Destructive Test (NDT) methods.

Carbon fiber testing is a set of various different tests that researchers use to characterize the properties of carbon fiber. The results for the testing are used to aid the manufacturer and developers decisions selecting and designing material composites, manufacturing processes and for ensured safety and integrity. Safety-critical carbon fiber components, such as structural parts in machines, vehicles, aircraft or architectural elements are subject to testing.

Transfer molding is a manufacturing process in which casting material is forced into a mold. Transfer molding is different from compression molding in that the mold is enclosed rather than open to the fill plunger resulting in higher dimensional tolerances and less environmental impact. Compared to injection molding, transfer molding uses higher pressures to uniformly fill the mold cavity. This allows thicker reinforcing fiber matrices to be more completely saturated by resin. Furthermore, unlike injection molding, the transfer mold casting material may start the process as a solid. This can reduce equipment costs and time dependency. The transfer process may have a slower fill rate than an equivalent injection molding process.

Welding of advanced thermoplastic composites is a beneficial method of joining these materials compared to mechanical fastening and adhesive bonding. Mechanical fastening requires intense labor, and creates stress concentrations, while adhesive bonding requires extensive surface preparation, and long curing cycles. Welding these materials is a cost-effective method of joining concerning preparation and execution, and these materials retain their properties upon cooling, so no post processing is necessary. These materials are widely used in the aerospace industry to reduce weight of a part while keeping strength.

Implant resistance welding is a method used in welding to join thermoplastics and thermoplastic composites.

A Lay-Up process is a moulding process for composite materials, in which the final product is obtained by overlapping a specific number of different layers, usually made of continuous polymeric or ceramic fibres and a thermoset polymeric liquid matrix. It can be divided into Dry Lay-up and Wet Lay-Up, depending on whether the layers are pre-impregnated or not. Dry Lay-up is a common process in the aerospace industry, due to the possibility of obtaining complex shapes with good mechanical properties, characteristics required in this field. On the contrary, as Wet Lay-Up does not allow uni-directional fabrics, which have better mechanical properties, it is mainly adopted for all other areas, which in general have lower requirements in terms of performance.

Xiaowen Yuan is a New Zealand materials scientist, and is a full professor at the Auckland University of Technology, specialising in novel composite materials from natural materials for high performance uses, such as improving supercapacitor performance.

References

  1. Partridge, Ivana; Bonnington, Tony; Cartié, Denis (2003). "Manufacture and Performance of Z-Pinned Composites". Advanced Polymeric Materials. CRC Press. doi:10.1201/9780203492901.ch3. ISBN   978-1-58716-047-9.
  2. Partridge, Ivana K.; Denis D.R. Cartié (January 2005). "Delamination resistant laminates by Z-Fiber pinning". Composites Part A. 36: 55–64. doi:10.1016/j.compositesa.2004.06.029.
  3. 1 2 Chang, P.; Mouritz, A.P.; Cox, B.N. (2006-10-01). "Properties and failure mechanisms of z-pinned laminates in monotonic and cyclic tension". Composites Part A: Applied Science and Manufacturing. 37 (10): 1501–1513. doi:10.1016/j.compositesa.2005.11.013. ISSN   1359-835X.
  4. Njuguna, J.; Pielichowski, K.; Alcock, J. R. (2007). "Epoxy-Based Fibre Reinforced Nanocomposites". Advanced Engineering Materials. 9 (10): 835–847. doi:10.1002/adem.200700118. hdl: 1826/7528 . ISSN   1527-2648.
  5. Huan, Dajun; Li, Yong; Tan, Yan; Zhang, Xiangyang; Xiao, Jun (2017). "On the assessment of the load-bearing capacity of Z-pinned composite T-joint under out-of-plane tension". Journal of Reinforced Plastics and Composites . 36 (22): 1639–1650. doi:10.1177/0731684417722409.
  6. Francesconi, L.; Aymerich, F. (2018-11-01). "Effect of Z-pinning on the impact resistance of composite laminates with different layups". Composites Part A: Applied Science and Manufacturing. 114: 136–148. doi:10.1016/j.compositesa.2018.08.013. ISSN   1359-835X.
  7. 1 2 3 Lenzi, F.; Riccio, A.; Clarke, A.; Creemers, R. (2007). "Coupon Tests on z-Pinned and Unpinned Composite Samples for Damage Resistant Applications". Macromolecular Symposia. 247 (1): 230–237. doi:10.1002/masy.200750126. ISSN   1521-3900.
  8. Wang, Xiao-Xu; Chen, Li; Jiao, Ya-Nan; Li, Jia-Lu (2016). "Preparation of carbon fiber powder-coated Z-pins and experimental study on the mode I delamination toughening properties". Polymer Composites. 37 (12): 3508–3515. doi:10.1002/pc.23550. ISSN   1548-0569.