Zemax

Last updated

Zemax OpticStudio, also known simply as Zemax, is a software program used for designing and simulating optical systems. It runs under Microsoft Windows. [1] [2] [3] It can be used in the fields of optics and photonics to design and analyze lenses, cameras, telescopes, microscopes, and other optical systems. It is used for the design and analysis of both imaging and illumination systems. Since 2021, it has been owned and developed by Ansys.

Contents

History

The software was originally written by Ken Moore. It was the first optical design program specifically written for Microsoft Windows. [4] [5] It became commercially available in 1990. [6] The first version was called Max, named after Ken Moore's dog. The name was later changed to Zemax due to a trademark conflict. [4] The program was originally sold by Focus Software, which later became Zemax Development Corp. [7]

In 2011, Evergreen Pacific Partners merged Zemax Development Corp with Radiant Imaging to form Radiant Zemax. [8] [9] [10]

The Zemax software was rewritten under the .NET framework. It was renamed OpticStudio and launched in 2014.[ citation needed ] One of the new features of OpticStudio was the inclusion of an application programming interface called ZOS-API to interface with other languages including MATLAB and Python.[ citation needed ]

In 2014 Radiant sold Zemax to Arlington Capital Partners, which named the company Zemax, LLC. [11] Arlington Capital Partners sold Zemax to EQT Partners in 2018. [12]

In 2021, Ansys acquired Zemax, LLC. [13]

Features and applications

OpticStudio can be used to design and analyze imaging systems such as camera lenses, as well as illumination systems. It works by ray tracing—modelling the propagation of rays through an optical system. It can model the effect of optical elements such as simple lenses, aspheric lenses, gradient-index lenses, mirrors, and diffractive optical elements, and can produce standard analysis diagrams such as spot diagrams and ray-fan plots. [7] [14]

OpticStudio can also model the effect of optical coatings on the surfaces of components. [7] It includes a library of stock commercial lenses. [15] OpticStudio can perform standard sequential ray tracing through optical elements, non-sequential ray tracing for analysis of stray light, and physical optics beam propagation. It also has tolerancing capability, to allow analysis of the effect of manufacturing defects and assembly errors. [16]

The physical optics propagation feature can be used for problems where diffraction is important, including the propagation of laser beams and the coupling of light into single-mode optical fibers. [17] OpticStudio's optimization tools can be used to improve an initial lens design by automatically adjusting parameters to maximize performance and reduce aberrations. [18]

Related Research Articles

<span class="mw-page-title-main">Optics</span> Branch of physics that studies light

Optics is the branch of physics that studies the behaviour and properties of light, including its interactions with matter and the construction of instruments that use or detect it. Optics usually describes the behaviour of visible, ultraviolet, and infrared light. Light is a type of electromagnetic radiation, and other forms of electromagnetic radiation such as X-rays, microwaves, and radio waves exhibit similar properties.

Electro–optics is a branch of electrical engineering, electronic engineering, materials science, and material physics involving components, electronic devices such as lasers, laser diodes, LEDs, waveguides, etc. which operate by the propagation and interaction of light with various tailored materials. It is closely related to photonics, the branch of optics that involves the application of the generation of photons. It is not only concerned with the "electro–optic effect", since it deals with the interaction between the electromagnetic and the electrical states of materials.

<span class="mw-page-title-main">Photonics</span> Technical applications of optics

Photonics is a branch of optics that involves the application of generation, detection, and manipulation of light in form of photons through emission, transmission, modulation, signal processing, switching, amplification, and sensing. Photonics is closely related to quantum electronics, where quantum electronics deals with the theoretical part of it while photonics deal with its engineering applications. Though covering all light's technical applications over the whole spectrum, most photonic applications are in the range of visible and near-infrared light. The term photonics developed as an outgrowth of the first practical semiconductor light emitters invented in the early 1960s and optical fibers developed in the 1970s.

Optics is the branch of physics which involves the behavior and properties of light, including its interactions with matter and the construction of instruments that use or detect it. Optics usually describes the behavior of visible, ultraviolet, and infrared light. Because light is an electromagnetic wave, other forms of electromagnetic radiation such as X-rays, microwaves, and radio waves exhibit similar properties.

<span class="mw-page-title-main">Diffraction-limited system</span> Optical system with resolution performance at the instruments theoretical limit

In optics, any optical instrument or system – a microscope, telescope, or camera – has a principal limit to its resolution due to the physics of diffraction. An optical instrument is said to be diffraction-limited if it has reached this limit of resolution performance. Other factors may affect an optical system's performance, such as lens imperfections or aberrations, but these are caused by errors in the manufacture or calculation of a lens, whereas the diffraction limit is the maximum resolution possible for a theoretically perfect, or ideal, optical system.

<span class="mw-page-title-main">Astigmatism (optical systems)</span> Optical aberration

An optical system with astigmatism is one where rays that propagate in two perpendicular planes have different foci. If an optical system with astigmatism is used to form an image of a cross, the vertical and horizontal lines will be in sharp focus at two different distances. The term comes from the Greek α- (a-) meaning "without" and στίγμα (stigma), "a mark, spot, puncture".

<span class="mw-page-title-main">Metamaterial</span> Materials engineered to have properties that have not yet been found in nature

A metamaterial is any material engineered to have a property that is rarely observed in naturally occurring materials. They are made from assemblies of multiple elements fashioned from composite materials such as metals and plastics. These materials are usually arranged in repeating patterns, at scales that are smaller than the wavelengths of the phenomena they influence. Metamaterials derive their properties not from the properties of the base materials, but from their newly designed structures. Their precise shape, geometry, size, orientation and arrangement gives them their smart properties capable of manipulating electromagnetic waves: by blocking, absorbing, enhancing, or bending waves, to achieve benefits that go beyond what is possible with conventional materials.

<span class="mw-page-title-main">Wavefront</span> Locus of points at equal phase in a wave

In physics, the wavefront of a time-varying wave field is the set (locus) of all points having the same phase. The term is generally meaningful only for fields that, at each point, vary sinusoidally in time with a single temporal frequency.

<span class="mw-page-title-main">Electron optics</span> Electron trajectories in electromagnetic fields

Electron optics is a mathematical framework for the calculation of electron trajectories in the presence of electromagnetic fields. The term optics is used because magnetic and electrostatic lenses act upon a charged particle beam similarly to optical lenses upon a light beam.

<span class="mw-page-title-main">Ray (optics)</span> Idealized model of light

In optics, a ray is an idealized geometrical model of light or other electromagnetic radiation, obtained by choosing a curve that is perpendicular to the wavefronts of the actual light, and that points in the direction of energy flow. Rays are used to model the propagation of light through an optical system, by dividing the real light field up into discrete rays that can be computationally propagated through the system by the techniques of ray tracing. This allows even very complex optical systems to be analyzed mathematically or simulated by computer. Ray tracing uses approximate solutions to Maxwell's equations that are valid as long as the light waves propagate through and around objects whose dimensions are much greater than the light's wavelength. Ray optics or geometrical optics does not describe phenomena such as diffraction, which require wave optics theory. Some wave phenomena such as interference can be modeled in limited circumstances by adding phase to the ray model.

<span class="mw-page-title-main">Optical fiber</span> Light-conducting fiber

An optical fiber, or optical fibre, is a flexible glass or plastic fiber that can transmit light from one end to the other. Such fibers find wide usage in fiber-optic communications, where they permit transmission over longer distances and at higher bandwidths than electrical cables. Fibers are used instead of metal wires because signals travel along them with less loss and are immune to electromagnetic interference. Fibers are also used for illumination and imaging, and are often wrapped in bundles so they may be used to carry light into, or images out of confined spaces, as in the case of a fiberscope. Specially designed fibers are also used for a variety of other applications, such as fiber optic sensors and fiber lasers.

An optical waveguide is a physical structure that guides electromagnetic waves in the optical spectrum. Common types of optical waveguides include optical fiber waveguides, transparent dielectric waveguides made of plastic and glass, liquid light guides, and liquid waveguides.

Optical lens design is the process of designing a lens to meet a set of performance requirements and constraints, including cost and manufacturing limitations. Parameters include surface profile types, as well as radius of curvature, distance to the next surface, material type and optionally tilt and decenter. The process is computationally intensive, using ray tracing or other techniques to model how the lens affects light that passes through it.

<span class="mw-page-title-main">Vergence (optics)</span> Angle between converging or diverging light rays

In optics, vergence is the angle formed by rays of light that are not perfectly parallel to one another. Rays that move closer to the optical axis as they propagate are said to be converging, while rays that move away from the axis are diverging. These imaginary rays are always perpendicular to the wavefront of the light, thus the vergence of the light is directly related to the radii of curvature of the wavefronts. A convex lens or concave mirror will cause parallel rays to focus, converging toward a point. Beyond that focal point, the rays diverge. Conversely, a concave lens or convex mirror will cause parallel rays to diverge.

<span class="mw-page-title-main">Laser beam profiler</span> Measurement device

A laser beam profiler captures, displays, and records the spatial intensity profile of a laser beam at a particular plane transverse to the beam propagation path. Since there are many types of lasers—ultraviolet, visible, infrared, continuous wave, pulsed, high-power, low-power—there is an assortment of instrumentation for measuring laser beam profiles. No single laser beam profiler can handle every power level, pulse duration, repetition rate, wavelength, and beam size.

<span class="mw-page-title-main">Microlens</span> Small lens, generally with a diameter less than a millimetre

A microlens is a small lens, generally with a diameter less than a millimetre (mm) and often as small as 10 micrometres (µm). The small sizes of the lenses means that a simple design can give good optical quality but sometimes unwanted effects arise due to optical diffraction at the small features. A typical microlens may be a single element with one plane surface and one spherical convex surface to refract the light. Because micro-lenses are so small, the substrate that supports them is usually thicker than the lens and this has to be taken into account in the design. More sophisticated lenses may use aspherical surfaces and others may use several layers of optical material to achieve their design performance.

In physics, ray tracing is a method for calculating the path of waves or particles through a system with regions of varying propagation velocity, absorption characteristics, and reflecting surfaces. Under these circumstances, wavefronts may bend, change direction, or reflect off surfaces, complicating analysis. Strictly speaking Ray tracing is when analytic solutions to the ray's trajectories are solved; however Ray tracing is often confused with ray-marching which numerically solves problems by repeatedly advancing idealized narrow beams called rays through the medium by discrete amounts. Simple problems can be analyzed by propagating a few rays using simple mathematics. More detailed analysis can be performed by using a computer to propagate many rays.

The time-stretch analog-to-digital converter (TS-ADC), also known as the time-stretch enhanced recorder (TiSER), is an analog-to-digital converter (ADC) system that has the capability of digitizing very high bandwidth signals that cannot be captured by conventional electronic ADCs. Alternatively, it is also known as the photonic time-stretch (PTS) digitizer, since it uses an optical frontend. It relies on the process of time-stretch, which effectively slows down the analog signal in time before it can be digitized by a standard electronic ADC.

TracePro is a commercial optical engineering software program for designing and analyzing optical and illumination systems. The program's graphical user interface (GUI) is 3D CAD-based creating a virtual prototyping environment to perform software simulation before manufacture.

Optica is an optical design program used for the design and analysis of both imaging and illumination systems. It works by ray tracing the propagation of rays through an optical system. It performs polarization ray-tracing, non-sequential ray-tracing, energy calculations, and optimization of optical systems in three-dimensional space. It also performs symbolic modeling of optical systems, diffraction, interference, wave-front, and Gaussian beam propagation calculations. In addition to conducting simulations of optical designs, Optica is used by scientists to create illustrations of the simulated results in publications. Some examples of Optica being used in simulations and illustrations include holography, x-ray optics, spectrometers, Cerenkov radiation, microwave optics, nonlinear optics, scattering, camera design, extreme ultraviolet lithography simulations, telescope optics, laser design, ultrashort pulse lasers, eye models, solar concentrators and Ring Imaging CHerenkov (RICH) particle detectors.

References

  1. Fischer, Robert E.; Tadic-Galeb, Biljana; Yoder, Paul R. (2008). Optical System Design (2nd ed.). New York: McGraw-Hill. p. 603. ISBN   0-07-147248-7. ...the Zemax software package, one of the industry's standards.
  2. Smith, Warren J. (2007). Modern Optical Engineering (4th ed.). McGraw-Hill. p. 436. ISBN   0-07-147687-3.
  3. Geary, Joseph M. (2002). Introduction to Lens Design: With Practical Zemax Examples. Willmann-Bell. ISBN   0-943396-75-1.
  4. 1 2 Moore, Ken (21 April 2006). "Why is it called ZEMAX?". ZEMAX Users' Knowledge Base. Archived from the original on 12 May 2008. Retrieved 30 May 2008.
  5. McLean, Ian S. (2008). Electronic imaging in astronomy : detectors and instrumentation (2nd ed.). Berlin: Springer. p. 203. ISBN   3540765824.
  6. "Design software: which package do you need?". Opto & Laser Europe. July–August 2003. Retrieved 21 July 2013.
  7. 1 2 3 Tesar, John (March 1997). "Latest Zemax creates and evaluates designs". Laser Focus World. 33 (3). Retrieved 2008-05-30.
  8. "Radiant, Zemax merge with backing from Evergreen Pacific". Bizjournal. Retrieved 21 July 2013.
  9. Cook, John (2011-03-25). "Private equity firm merges Radiant Imaging and Zemax". GeekWire. Retrieved 2024-04-09.
  10. "Radiant Imaging, Zemax Merge". Photonics Spectra. 2011-04-20. Retrieved 2024-04-09.
  11. "About us". Zemax.com. Retrieved September 10, 2015.
  12. "EQT press release". EQT website. June 26, 2018.
  13. "Ansys acquires simulation software company Zemax". Post-gazette.com. 2021-08-31. Retrieved 2021-09-01.
  14. Laikin, Milton (2006). Lens Design (4th ed.). CRC. ISBN   0-8493-8278-5.
  15. Fischer (2008), p. 590.
  16. "Tolerancing". Radiant Zemax website. Retrieved 22 July 2013.
  17. "Exploring Physical Optics Propagation in Zemax". Radiant Zemax website. Retrieved 22 July 2013.
  18. "Optical Optimization". Radiant Zemax website. Retrieved 22 July 2013.