Angiofibroma of soft tissue

Last updated
Angiofibroma of soft tissue
Specialty Dermatology, General surgery, Pathology
Types Benign
Causesunknown
TreatmentSurgical removal
Prognosis Good
FrequencyRare

Angiofibroma of soft tissue (AFST), also termed angiofibroma, not otherwise specified, is a recently recognized and rare disorder that was classified in the category of benign fibroblastic and myofibroblastic tumors by the World Health Organization in 2020. [1] An AFST tumor is a neoplasm (i.e. growth of tissue that is not coordinated with the normal surrounding tissue and persists in growing even if the original trigger for growth is removed) that was first described by A. Mariño-Enríquez and C.D. Fletcher in 2012. [2]

Contents

AFST tumors typically occur in a leg but can occur in other locations; they develop in older children and adults including elderly individuals. AFSTs are slow-growing, often painless tumors composed primarily of spindle-shaped cells and a prominent vascular network. The spindle-shaped cells are benign tumor cells that in almost all cases have chromosome abnormalities that are thought to contribute to their abnormal development and/or growth. [3]

AFST tumors are commonly treated by surgical excision although in uncommon cases they recur at the site of their removal and require further surgical treatment. [2] They do not metastasize to distant tissues and overall have a good prognosis. [4]

Presentation

AFST tumors commonly present as slowly growing, painless, deep-seated lumps in individuals aged 6 to 86 years old (median age 47-50 years in different studies). [4] The tumors are most common in the lower extremities but uncommonly occur in the back, chest wall, iliac crest, groin and nearby lower lateral abdominal region, [4] abdominal cavity, pelvic cavity, [5] breast, [3] cheek, temporal region of the head and, in a report on 24 AFST cases done in Shanghai, the upper limb in 3 cases and, in 1 case each, the retroperitoneum and liver. [6] The tumors' longest diameters have ranged from 1.2 to 10 cm (mean: 5.1 cm) [4] and 0.8 to 14 cm (mean: 4.6 cm) [6] in two different studies.

Pathology

Grossly, AFST tumors, when visible on skin, are located in the skin's subcutaneous tissue or the fascia layer below the subcutaneous tissue. [3] They may be infiltrating deeper into these tissues [4] and/or into nearby large joints. [3] Regardless of location, however, most of these tumors are well-circumscribed. [5]

Histopathological microscopic analyses of hematoxylin and eosin-stained AFST tissues generally reveal bland appearing spindle-shaped cells and a prominent small, thin-walled blood vessels network in a background of alternating myxoid connective tissue areas and more highly cellular collagen fiber-rich connective tissue areas. (Myxoid indicates areas that appear more blue or purple than normal due to their high uptake of the hematoxylin stain.) Typically, these tumors appear well-circumscribed but some cases show them infiltrating into adjacent normal adipose tissues, connective tissues, skeletal muscles, and/or joints. [4] Immunohistochemistry analyses (i.e. identifying specific proteins in cells using antibodies that bind to these proteins) of AFST tissues detect cells bearing estrogen receptor, CD163 and NCOA2 proteins in 100% of cases; MUC1 (also termed EMA) protein in 46% of cases; desmin protein in 22% of cases; ACTA2 (also termed α-SMA), CD34, and STAT6 proteins in 10% or fewer cases, and S100 and cytokeratin proteins in no cases.

Chromosome and gene abnormalities

In 60-80% of cases, the cells in AFST tumors express the AHRR-NCOA2 fusion gene. A fusion gene is a hybrid gene formed from two previously independent genes as a result of a translocation, interstitial deletion, or chromosomal inversion. [5] The AHRR gene (i.e. gene for the aryl hydrocarbon receptor repressor protein) is located at band 15.33 on the short (or "p") arm of chromosome 5 (cite designation: 5p15.33); [7] The NCOA2 gene (i.e. gene for the nuclear receptor coactivator 2 protein) is located at band 13.3 on the long (or "q") arm of chromosome 8 (cite designation: 8q13.3). [8] A translocation between these two chromosomes creates the AHRR-NCOA2 fusion gene (fusion gene designation: t(5;8)(q15;q13)). [9] AHRR is a tumor suppressor gene that when fused to other genes is found in the cells of , and thought to promote, various leukemias and neoplasms. It is thought to similarly promote the development and/or progression of AFST tumors. [4] While most commonly associated with the AHRR-NCOA2 fusion gene, rare AFST tumor cases have also been shown to be associated with GAB1-ABL1, GTF2I-NCOA2, NCOA2-ETV4, ETV4-AHRR, [4] and NAB2-STAT6 [4] fusion genes.

Diagnosis

The diagnosis of AFST depends on its presentation (particularly its location), histopathology (particularly the expression of certain proteins by its tumor cells), and the presence of specific fusion genes (e.g. AGRR-NCOA2) in its tumor cells. Among benign tumors, cellular angiofibroma and solitary fibrous tumor may be confused with AFST. Cellular angiofibroma differs from AFTS in its typical location (i.e. inguinal, scrotal, and vulva areas), its distinct histology of rounded, non-branching vessels, high cellularity, and cells with small nuclei, and its tumor cells' loss of the RB1 gene. Solitary fibrous tumors differ from AFST tumors in their common location in the lungs' pleurae, their characteristic branching dilated, staghorn-shaped blood vessels, and their tumor cells' expression of CD34 and STAT6 proteins in the majority of the cases. AFTS tumors may also be confused with three malignant tumors, low-grade fibromyxoid sarcoma, myxofibrosarcoma, and myxoid liposarcoma. Low-grade fibromyxoid sarcomas tend to be less cellular and have less prominent blood vessel than AFST; they also differ from AFST in that their tumor cells commonly express the MUC4 protein and FUS-CREB3L1, FUS-CREBL2, or, EWSR1-CREB3L1 fusion genes. Myxofibrosarcoma tumors commonly show overt malignant features such as highly infiltrating margins, tumor cells with eosinophilic cytoplasm, atypical nuclei, and rapid proliferation rates as evidenced by their high mitotic indexes. Myxoid liposarcoma tumors consist of round or slightly fusiform cells in a myxoid matrix, vacuolated lipoblasts (i.e. cells that are precursors to fat cells), and arborizing networks of thin-walled capillaries. [3] In all of these cases, the presence of one of the AFST-associated fusion genes cited in the previous section lends support for the diagnosis of AFST. [3] [9]

Treatment and prognosis

AFST tumors are typically treated by total surgical resection in order to remove all tumor tissue. [4] Uncommonly, these tumors have recurred at the site of their removal, particularly in cases where a portion of the original tumor was not removed. [5] Recurrences have occurred 4-120 months after the original resections [4] and have been treated by a second surgical resection. [2] Overall, AFST tumors have a good prognosis. [4]

Related Research Articles

<span class="mw-page-title-main">Dermatofibrosarcoma protuberans</span> Medical condition

Dermatofibrosarcoma protuberans (DFSP) is a rare locally aggressive malignant cutaneous soft-tissue sarcoma. DFSP develops in the connective tissue cells in the middle layer of the skin (dermis). Estimates of the overall occurrence of DFSP in the United States are 0.8 to 4.5 cases per million persons per year. In the United States, DFSP accounts for between 1 and 6 percent of all soft-tissue sarcomas and 18 percent of all cutaneous soft-tissue sarcomas. In the Surveillance, Epidemiology and End Results (SEER) tumor registry from 1992 through 2004, DFSP was second only to Kaposi sarcoma.

<span class="mw-page-title-main">Liposarcoma</span> Medical condition

Liposarcomas are the most common subtype of soft tissue sarcomas, accounting for at least 20% of all sarcomas in adults. Soft tissue sarcomas are rare neoplasms with over 150 different histological subtypes or forms. Liposarcomas arise from the precursor lipoblasts of the adipocytes in adipose tissues. Adipose tissues are distributed throughout the body, including such sites as the deep and more superficial layers of subcutaneous tissues as well as in less surgically accessible sites like the retroperitoneum and visceral fat inside the abdominal cavity.

<span class="mw-page-title-main">Nodular fasciitis</span> Medical condition

Nodular fasciitis (NF) is a benign, soft tissue tumor composed of myofibroblasts that typically occurs in subcutaneous tissue, fascia, and/or muscles. The literature sometimes titles rare NF variants according to their tissue locations. The most frequently used and important of these are cranial fasciitis and intravascular fasciitis. In 2020, the World Health Organization classified nodular fasciitis as in the category of benign fibroblastic/myofibroblastic tumors. NF is the most common of the benign fibroblastic proliferative tumors of soft tissue.

<span class="mw-page-title-main">Mesoblastic nephroma</span> Medical condition

Congenital mesoblastic nephroma, while rare, is the most common kidney neoplasm diagnosed in the first three months of life and accounts for 3-5% of all childhood renal neoplasms. This neoplasm is generally non-aggressive and amenable to surgical removal. However, a readily identifiable subset of these kidney tumors has a more malignant potential and is capable of causing life-threatening metastases. Congenital mesoblastic nephroma was first named as such in 1967 but was recognized decades before this as fetal renal hamartoma or leiomyomatous renal hamartoma.

Giant cell fibroblastoma (GCF) is a rare type of soft-tissue tumor marked by painless nodules in the dermis and subcutaneous tissue. These tumors may come back after surgery, but they do not spread to other parts of the body. They occur mostly in boys. GCF tumor tissues consist of bland spindle-shaped or stellate-shaped cells interspersed among multinucleated giant cells.

<span class="mw-page-title-main">Angiofibroma</span> Medical condition

Angiofibroma (AGF) is a descriptive term for a wide range of benign skin or mucous membrane lesions in which individuals have:

  1. benign papules, i.e. pinhead-sized elevations that lack visible evidence of containing fluid;
  2. nodules, i.e. small firm lumps usually >0.1 cm in diameter; and/or
  3. tumors, i.e. masses often regarded as ~0.8 cm or larger.
<span class="mw-page-title-main">Hibernoma</span> Medical condition

A hibernoma is a benign neoplasm of vestigial brown fat. The term was originally used by the French anatomist Louis Gery in 1914.

Fibrous hamartoma of infancy (FHI) is a rare, typically painless, benign tumor that develops in the subcutaneous tissues of the axilla, arms, external genitalia, or, less commonly, various other areas. It is diagnosed in children who are usually less than 2 years old or, in up to 20% of cases, develops in utero and is diagnosed in an infant at birth.

Extraskeletal myxoid chondrosarcoma (EMC) is a rare low-grade malignant mesenchymal neoplasm of the soft tissues, that differs from other sarcomas by unique histology and characteristic chromosomal translocations. There is an uncertain differentiation and neuroendocrine differentiation is even possible.

<span class="mw-page-title-main">Koenen's tumor</span> Medical condition

Koenen's tumor (KT), also commonly termed periungual angiofibroma, is a subtype of the angiofibromas. Angiofibromas are benign papule, nodule, and/or tumor lesions that are separated into various subtypes based primarily on the characteristic locations of their lesions. KTs are angiofibromas that develop in and under the toenails and/or fingernails. KTs were once considered as the same as another subtype of the angiofibromas viz., acral angiofibromas. While the literature may still sometimes regard KTs as acral angiofibromas, acral angiofibromas are characteristically located in areas close to but not in the toenails and fingernails as well as in the soles of the feet and palms of the hands. KTs are here regarded as distinct from acral angiofibromas.

<span class="mw-page-title-main">Low-grade fibromyxoid sarcoma</span> Medical condition

Low-grade fibromyxoid sarcoma (LGFMS) is a rare type of low-grade sarcoma first described by H. L. Evans in 1987. LGFMS are soft tissue tumors of the mesenchyme-derived connective tissues; on microscopic examination, they are found to be composed of spindle-shaped cells that resemble fibroblasts. These fibroblastic, spindle-shaped cells are neoplastic cells that in most cases of LGFMS express fusion genes, i.e. genes composed of parts of two different genes that form as a result of mutations. The World Health Organization (2020) classified LGFMS as a specific type of tumor in the category of malignant fibroblastic and myofibroblastic tumors.

<span class="mw-page-title-main">Mammary-type myofibroblastoma</span> Medical condition

Mammary-type myofibroblastoma (MFB), also named mammary and extramammary myofibroblastoma, was first termed myofibrolastoma of the breast, or, more simply, either mammary myofibroblastoma (MMFB) or just myofibroblastoma. The change in this terminology occurred because the initial 1987 study and many subsequent studies found this tumor only in breast tissue. However, a 2001 study followed by numerous reports found tumors with the microscopic histopathology and other key features of mammary MFB in a wide range of organs and tissues. Further complicating the issue, early studies on MFB classified it as one of various types of spindle cell tumors that, except for MFB, were ill-defined. These other tumors, which have often been named interchangeably in different reports, are: myelofibroblastoma, benign spindle cell tumor, fibroma, spindle cell lipoma, myogenic stromal tumor, and solitary stromal tumor. Finally, studies suggest that spindle cell lipoma and cellular angiofibroma are variants of MFB. Here, the latter two tumors are tentatively classified as MFB variants but otherwise MFB is described as it is more strictly defined in most recent publications. The World Health Organization in 2020 classified mammary type myofibroblastoma tumors and myofibroblastoma tumors as separate tumor forms within the category of fibroblastic and myofibroblastic tumors.

Acral myxoinflammatory fibroblastic sarcoma (AMSF), also termed myxoinflammatory fibroblastic sarcoma (MSF), is a rare, low-grade, soft tissue tumor that the World Health Organization (2020) classified as in the category of rarely metastasizing fibroblastic and myofibroblastic tumors. It is a locally aggressive neoplasm that often recurs at the site of its surgical removal. However, it usually grows slowly and in only 1–2% of cases spreads to distant tissues.

<span class="mw-page-title-main">Proliferative fasciitis and proliferative myositis</span> Medical condition

Proliferative fasciitis and proliferative myositis (PF/PM) are rare benign soft tissue lesions that increase in size over several weeks and often regress over the ensuing 1–3 months. The lesions in PF/PM are typically obvious tumors or swellings. Historically, many studies had grouped the two descriptive forms of PF/PM as similar disorders with the exception that proliferative fasciitis occurs in subcutaneous tissues while proliferative myositis occurs in muscle tissues. In 2020, the World Health Organization agreed with this view and defined these lesions as virtually identical disorders termed proliferative fasciitis/proliferative myositis or proliferative fasciitis and proliferative myositis. The Organization also classified them as one of the various forms of the fibroblastic and myofibroblastic tumors.

Fibroblastic and myofibroblastic tumors (FMTs) develop from the mesenchymal stem cells which differentiate into fibroblasts and/or the myocytes/myoblasts that differentiate into muscle cells. FMTs are a heterogeneous group of soft tissue neoplasms. The World Health Organization (2020) defined tumors as being FMTs based on their morphology and, more importantly, newly discovered abnormalities in the expression levels of key gene products made by these tumors' neoplastic cells. Histopathologically, FMTs consist of neoplastic connective tissue cells which have differented into cells that have microscopic appearances resembling fibroblasts and/or myofibroblasts. The fibroblastic cells are characterized as spindle-shaped cells with inconspicuous nucleoli that express vimentin, an intracellular protein typically found in mesenchymal cells, and CD34, a cell surface membrane glycoprotein. Myofibroblastic cells are plumper with more abundant cytoplasm and more prominent nucleoli; they express smooth muscle marker proteins such as smooth muscle actins, desmin, and caldesmon. The World Health Organization further classified FMTs into four tumor forms based on their varying levels of aggressiveness: benign, intermediate, intermediate, and malignant.

Lipofibromatosis-like neural tumor (LPF-NT) is an extremely rare soft tissue tumor first described by Agaram et al in 2016. As of mid-2021, at least 39 cases of LPF-NT have been reported in the literature. LPF-NT tumors have several features that resemble lipofibromatosis (LPF) tumors, malignant peripheral nerve sheath tumors, spindle cell sarcomas, low-grade neural tumors, peripheral nerve sheath tumors, and other less clearly defined tumors; Prior to the Agaram at al report, LPF-NTs were likely diagnosed as variants or atypical forms of these tumors. The analyses of Agaram at al and subsequent studies uncovered critical differences between LPF-NT and the other tumor forms which suggest that it is a distinct tumor entity differing not only from lipofibromatosis but also the other tumor forms.

Myxofibrosarcoma (MFS), although a rare type of tumor, is one of the most common soft tissue sarcomas, i.e. cancerous tumors, that develop in the soft tissues of elderly individuals. Initially considered to be a type of histiocytoma termed fibrous histiocytoma or myxoid variant of malignant fibrous histiocytoma, Angervall et al. termed this tumor myxofibrosarcoma in 1977. In 2020, the World Health Organization reclassified MFS as a separate and distinct tumor in the category of malignant fibroblastic and myofibroblastic tumors.

Sclerosing epithelioid fibrosarcoma (SEF) is a very rare malignant tumor of soft tissues that on microscopic examination consists of small round or ovoid neoplastic epithelioid fibroblast-like cells, i.e. cells that have features resembling both epithelioid cells and fibroblasts. In 2020, the World Health Organization classified SEF as a distinct tumor type in the category of malignant fibroblastic and myofibroblastic tumors. However, current studies have reported that low-grade fibromyxoid sarcoma (LGFMS) has many clinically and pathologically important features characteristic of SEF; these studies suggest that LGSFMS may be an early form of, and over time progress to become, a SEF. Since the World Health Organization has classified LGFMS as one of the malignant fibroblastic and myofibroblastic tumors that is distinctly different than SEF, SEF and LGFMS are here regarded as different tumor forms.

The FET protein family consists of three similarly structured and functioning proteins. They and the genes in the FET gene family which encode them are: 1) the EWSR1 protein encoded by the EWSR1 gene located at band 12.2 of the long arm of chromosome 22; 2) the FUS protein encoded by the FUS gene located at band 16 on the short arm of chromosome 16; and 3) the TAF15 protein encoded by the TAF15 gene located at band 12 on the long arm of chromosome 7 The FET in this protein family's name derives from the first letters of FUS, EWSR1, and TAF15.

Cellular angiofibroma (CAF) is a rare, benign tumor of superficial soft tissues that was first described by M. R. Nucci et al. in 1997. These tumors occur predominantly in the distal parts of the female and male reproductive systems, i.e. in the vulva-vaginal and inguinal-scrotal areas, respectively, or, less commonly, in various other superficial soft tissue areas throughout the body. CAF tumors develop exclusively in adults who typically are more than 30 years old.

References

  1. Sbaraglia M, Bellan E, Dei Tos AP (April 2021). "The 2020 WHO Classification of Soft Tissue Tumours: news and perspectives". Pathologica. 113 (2): 70–84. doi:10.32074/1591-951X-213. PMC   8167394 . PMID   33179614.
  2. 1 2 3 Mariño-Enríquez A, Fletcher CD (April 2012). "Angiofibroma of soft tissue: clinicopathologic characterization of a distinctive benign fibrovascular neoplasm in a series of 37 cases". The American Journal of Surgical Pathology. 36 (4): 500–8. doi:10.1097/PAS.0b013e31823defbe. PMID   22301504. S2CID   45742809.
  3. 1 2 3 4 5 6 Kallen ME, Hornick JL (January 2021). "The 2020 WHO Classification: What's New in Soft Tissue Tumor Pathology?". The American Journal of Surgical Pathology. 45 (1): e1–e23. doi:10.1097/PAS.0000000000001552. PMID   32796172. S2CID   225430576.
  4. 1 2 3 4 5 6 7 8 9 10 11 12 Mindiola-Romero AE, Maloney N, Bridge JA, Korkolopoulou P, Sakellariou S, Linos K (February 2020). "A concise review of angiofibroma of soft tissue: A rare newly described entity that can be encountered by dermatopathologists". Journal of Cutaneous Pathology. 47 (2): 179–185. doi: 10.1111/cup.13580 . PMID   31568567. S2CID   203625513.
  5. 1 2 3 4 Ali Z, Anwar F (November 2019). "Angiofibroma of Soft Tissue: A Newly Described Entity; A Case Report and Review of Literature". Cureus. 11 (11): e6225. doi: 10.7759/cureus.6225 . PMC   6929243 . PMID   31890425.
  6. 1 2 Xu XL, Liu JG, Sun M, Yu L, Liu QY, Bai QM, Wu LJ, Wang J (August 2018). "[Angiofibroma of soft tissue: a clinicopathologic analysis of 24 cases]". Zhonghua Bing Li Xue Za Zhi = Chinese Journal of Pathology (in Chinese). 47 (8): 616–621. doi:10.3760/cma.j.issn.0529-5807.2018.08.009. PMID   30107667.
  7. "AHRR aryl-hydrocarbon receptor repressor [Homo sapiens (Human)] - Gene - NCBI".
  8. "NCOA2 nuclear receptor coactivator 2 [Homo sapiens (Human)] - Gene - NCBI".
  9. 1 2 Oda Y, Yamamoto H, Kohashi K, Yamada Y, Iura K, Ishii T, Maekawa A, Bekki H (September 2017). "Soft tissue sarcomas: From a morphological to a molecular biological approach". Pathology International. 67 (9): 435–446. doi:10.1111/pin.12565. PMID   28759137. S2CID   34316562.