CD163

Last updated
CD163
Identifiers
Aliases CD163 , M130, MM130, SCARI1, CD163 molecule
External IDs OMIM: 605545 MGI: 2135946 HomoloGene: 128811 GeneCards: CD163
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_004244
NM_203416
NM_001370145
NM_001370146

NM_001170395
NM_053094

RefSeq (protein)

NP_004235
NP_981961
NP_001357074
NP_001357075

NP_001163866
NP_444324

Location (UCSC) Chr 12: 7.47 – 7.5 Mb Chr 6: 124.28 – 124.31 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

CD163 (Cluster of Differentiation 163) is a protein that in humans is encoded by the CD163 gene. [5] CD163 is the high affinity scavenger receptor for the hemoglobin-haptoglobin complex [6] and in the absence of haptoglobin - with lower affinity - for hemoglobin alone. [7] It also is a marker of cells from the monocyte/macrophage lineage. [8] CD163 functions as innate immune sensor for gram-positive and gram-negative bacteria. [9] [10] The receptor was discovered in 1987. [11]

Contents

Structure

The molecular size is 130 kDa. The receptor belongs to the scavenger receptor cysteine rich family type B and consists of a 1048 amino acid residues extracellular domain, a single transmembrane segment and a cytoplasmic tail with several splice variants.

Clinical significance

A soluble form of the receptor exists in plasma, and cerebrospinal fluid., [12] commonly denoted sCD163. It is generated by ectodomain shedding of the membrane bound receptor, which may represent a form of modulation of CD163 function. [13] sCD163 shedding occurs as a result of enzymatic cleavage by ADAM17. [14] sCD163 is upregulated in a large range of inflammatory diseases including liver cirrhosis, [15] type 2 diabetes, macrophage activation syndrome, Gaucher's disease, sepsis, HIV infection, rheumatoid arthritis and Hodgkin Lymphoma. [16] [17] sCD163 is also upregulated in cerebrospinal fluid after subarachnoid haemorrhage. [12] CD163 has recently been identified as expressed on neurons in the CNS following hemorrhage, although the significance of this is unclear. [18] [19] [20] The excretion of soluble CD163 into the urine is tightly associated with the presence of active glomerulonephritis in systemic lupus erythematosus and ANCA vasculitis and can be used to track response to therapy. [21]

Differences between mouse and human

Differences between mice and humans in CD163 biology are important to note since preclinical studies are frequently conducted in mice. sCD163 shedding occurs in humans but not mice, due to the emergence of an Arg-Ser-Ser-Arg sequence in humans, essential for enzymatic cleavage by ADAM17. [22] Human CD163, but not mouse CD163, exhibits a strikingly higher affinity to hemoglobin-haptoglobin complex compared to hemoglobin alone. [23]

Animal studies

Pigs with a section of the CD163 gene removed showed complete resistance to the virus that causes Porcine Reproductive and Respiratory Syndrome. [24]

Interactions

CD163 has been shown to interact with CSNK2B. [25]

See also

Related Research Articles

<span class="mw-page-title-main">Haptoglobin</span> Mammalian protein found in Homo sapiens

Haptoglobin is the protein that in humans is encoded by the HP gene. In blood plasma, haptoglobin binds with high affinity to free hemoglobin released from erythrocytes, and thereby inhibits its deleterious oxidative activity. Compared to Hp, hemopexin binds to free heme. The haptoglobin-hemoglobin complex will then be removed by the reticuloendothelial system.

<span class="mw-page-title-main">CD36</span> Mammalian protein found in Homo sapiens

CD36, also known as platelet glycoprotein 4, fatty acid translocase (FAT), scavenger receptor class B member 3 (SCARB3), and glycoproteins 88 (GP88), IIIb (GPIIIB), or IV (GPIV) is a protein that in humans is encoded by the CD36 gene. The CD36 antigen is an integral membrane protein found on the surface of many cell types in vertebrate animals. It imports fatty acids inside cells and is a member of the class B scavenger receptor family of cell surface proteins. CD36 binds many ligands including collagen, thrombospondin, erythrocytes parasitized with Plasmodium falciparum, oxidized low density lipoprotein, native lipoproteins, oxidized phospholipids, and long-chain fatty acids.

<span class="mw-page-title-main">Hemopexin</span>

Hemopexin, also known as beta-1B-glycoprotein, is a glycoprotein that in humans is encoded by the HPX gene and belongs to the hemopexin family of proteins. Hemopexin is the plasma protein with the highest binding affinity for heme.

<span class="mw-page-title-main">CCL2</span> Mammalian protein found in Homo sapiens

The chemokine ligand 2 (CCL2) is also referred to as monocyte chemoattractant protein 1 (MCP1) and small inducible cytokine A2. CCL2 is a small cytokine that belongs to the CC chemokine family. CCL2 tightly regulates cellular mechanics and thereby recruits monocytes, memory T cells, and dendritic cells to the sites of inflammation produced by either tissue injury or infection.

<span class="mw-page-title-main">CD14</span> Mammalian protein found in Homo sapiens

CD14 is a human protein made mostly by macrophages as part of the innate immune system. It helps to detect bacteria in the body by binding lipopolysaccharide (LPS), a pathogen-associated molecular pattern (PAMP).

<span class="mw-page-title-main">ICAM-1</span> Mammalian protein found in Homo sapiens

ICAM-1 also known as CD54 is a protein that in humans is encoded by the ICAM1 gene. This gene encodes a cell surface glycoprotein which is typically expressed on endothelial cells and cells of the immune system. It binds to integrins of type CD11a / CD18, or CD11b / CD18 and is also exploited by rhinovirus as a receptor for entry into respiratory epithelium.

<span class="mw-page-title-main">Endoglin</span> Protein-coding gene in the species Homo sapiens

Endoglin (ENG) is a type I membrane glycoprotein located on cell surfaces and is part of the TGF beta receptor complex. It is also commonly referred to as CD105, END, FLJ41744, HHT1, ORW and ORW1. It has a crucial role in angiogenesis, therefore, making it an important protein for tumor growth, survival and metastasis of cancer cells to other locations in the body.

<span class="mw-page-title-main">Interleukin 18</span> Protein-coding gene in the species Homo sapiens

Interleukin-18 (IL-18), also known as interferon-gamma inducing factor is a protein which in humans is encoded by the IL18 gene. The protein encoded by this gene is a proinflammatory cytokine. Many cell types, both hematopoietic cells and non-hematopoietic cells, have the potential to produce IL-18. It was first described in 1989 as a factor that induced interferon-γ (IFN-γ) production in mouse spleen cells. Originally, IL-18 production was recognized in Kupffer cells, and liver-resident macrophages. However, IL-18 is constitutively expressed in non-hematopoietic cells, such as intestinal epithelial cells, keratinocytes, and endothelial cells. IL-18 can modulate both innate and adaptive immunity and its dysregulation can cause autoimmune or inflammatory diseases.

The mannose receptor is a C-type lectin primarily present on the surface of macrophages, immature dendritic cells and liver sinusoidal endothelial cells, but is also expressed on the surface of skin cells such as human dermal fibroblasts and keratinocytes. It is the first member of a family of endocytic receptors that includes Endo180 (CD280), M-type PLA2R, and DEC-205 (CD205).

<span class="mw-page-title-main">CD68</span> Mammalian protein found in Homo sapiens

CD68 is a protein highly expressed by cells in the monocyte lineage, by circulating macrophages, and by tissue macrophages.

<span class="mw-page-title-main">C5a receptor</span> Mammalian protein found in Homo sapiens

The C5a receptor also known as complement component 5a receptor 1 (C5AR1) or CD88 is a G protein-coupled receptor for C5a. It functions as a complement receptor. C5a receptor 1 modulates inflammatory responses, obesity, development and cancers. From a signaling transduction perspective, C5a receptor 1 activation is implicated in β-arrestin2 recruitment via Rab5a, coupling of Gαi proteins, ERK1/2 phosphorylation, calcium mobilization and Rho activation leading to downstream functions, such as secretion of cytokines, chemotaxis, and phagocytosis.

<span class="mw-page-title-main">HMGB1</span> Mammalian protein found in Homo sapiens

High mobility group box 1 protein, also known as high-mobility group protein 1 (HMG-1) and amphoterin, is a protein that in humans is encoded by the HMGB1 gene.

<span class="mw-page-title-main">Interleukin-4 receptor</span> Protein-coding gene in the species Homo sapiens

The interleukin 4 receptor is a type I cytokine receptor. It is a heterodimer, that is, composed of two subunits. IL4R is the human gene coding for IL-4Rα, the subunit which combines with either common gamma chain or with IL-13Rα1.

<span class="mw-page-title-main">GPR15</span> Protein-coding gene in the species Homo sapiens

G protein-coupled receptor 15 is a protein that in humans is encoded by the GPR15 gene.

<span class="mw-page-title-main">MSR1</span> Protein-coding gene in the species Homo sapiens

Macrophage scavenger receptor 1, also known as MSR1, is a protein which in humans is encoded by the MSR1 gene. MSR1 has also been designated CD204.

<span class="mw-page-title-main">MARCO</span> Protein-coding gene in the species Homo sapiens

Macrophage receptor with collagenous structure (MARCO) is a protein that in humans is encoded by the MARCO gene. MARCO is a class A scavenger receptor that is found on particular subsets of macrophages. Scavenger receptors are pattern recognition receptors (PRRs) found most commonly on immune cells. Their defining feature is that they bind to polyanions and modified forms of a type of cholesterol called low-density lipoprotein (LDL). MARCO is able to bind and phagocytose these ligands and pathogen-associated molecular patterns (PAMPs), leading to the clearance of pathogens and cell signaling events that lead to inflammation. As part of the innate immune system, MARCO clears, or scavenges, pathogens, which leads to inflammatory responses. The scavenger receptor cysteine-rich (SRCR) domain at the end of the extracellular side of MARCO binds ligands to activate the subsequent immune responses. MARCO expression on macrophages has been associated with tumor development and also with Alzheimer's disease, via decreased responses of cells when ligands bind to MARCO.

<span class="mw-page-title-main">FCGR2B</span>

Fc fragment of IgG receptor IIb is a low affinity inhibitory receptor for the Fc region of immunoglobulin gamma (IgG). FCGR2B participates in the phagocytosis of immune complexes and in the regulation of antibody production by B lymphocytes.

<span class="mw-page-title-main">Hemoglobin, alpha 2</span> Mammalian protein found in Homo sapiens

Hemoglobin, alpha 2 also known as HBA2 is a gene that in humans codes for the alpha globin chain of hemoglobin.

Intravascular hemolysis describes hemolysis that happens mainly inside the vasculature. As a result, the contents of the red blood cell are released into the general circulation, leading to hemoglobinemia and increasing the risk of ensuing hyperbilirubinemia.

<span class="mw-page-title-main">Haptoglobin-related protein</span> Blood protein in primates

Haptoglobin-related protein (Hpr) is a serum protein that binds to haemoglobin of red blood cells and is present only in primates. It acts as a molecule of innate immunity in association with apolipoprotein L1 -containing high-density lipoprotein (HDL) particles. In humans, together with related serum protein, haptoglobin, it acts as a cell-killing agent as part of the trypanolytic factor against the protozoan parasite Trypanosoma brucei thereby providing natural resistance to African sleeping sickness. It is produced from the gene HPR that is located on the long arm of chromosome 16 within the HP gene cluster.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000177575 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000008845 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. "Entrez Gene: CD163 CD163 molecule".
  6. Kristiansen M, Graversen JH, Jacobsen C, Sonne O, Hoffman HJ, Law SK, Moestrup SK (January 2001). "Identification of the haemoglobin scavenger receptor". Nature. 409 (6817): 198–201. Bibcode:2001Natur.409..198K. doi:10.1038/35051594. PMID   11196644. S2CID   205012693.
  7. Schaer DJ, Schaer CA, Buehler PW, Boykins RA, Schoedon G, Alayash AI, Schaffner A (January 2006). "CD163 is the macrophage scavenger receptor for native and chemically modified hemoglobins in the absence of haptoglobin". Blood. 107 (1): 373–80. doi: 10.1182/blood-2005-03-1014 . PMID   16189277.
  8. Lau SK, Chu PG, Weiss LM (November 2004). "CD163: a specific marker of macrophages in paraffin-embedded tissue samples". American Journal of Clinical Pathology. 122 (5): 794–801. doi: 10.1309/QHD6YFN81KQXUUH6 . PMID   15491976.
  9. Fabriek BO, van Bruggen R, Deng DM, Ligtenberg AJ, Nazmi K, Schornagel K, Vloet RP, Dijkstra CD, van den Berg TK (January 2009). "The macrophage scavenger receptor CD163 functions as an innate immune sensor for bacteria" (PDF). Blood. 113 (4): 887–92. doi:10.1182/blood-2008-07-167064. PMID   18849484. S2CID   4811741.
  10. Van Gorp H, Delputte PL, Nauwynck HJ (April 2010). "Scavenger receptor CD163, a Jack-of-all-trades and potential target for cell-directed therapy". Molecular Immunology. 47 (7–8): 1650–60. doi:10.1016/j.molimm.2010.02.008. PMID   20299103.
  11. Onofre G, Kolácková M, Jankovicová K, Krejsek J (2009). "Scavenger receptor CD163 and its biological functions". Acta Medica. 52 (2): 57–61. PMID   19777868.
  12. 1 2 Galea J, Cruickshank G, Teeling JL, Boche D, Garland P, Perry VH, Galea I (June 2012). "The intrathecal CD163-haptoglobin-hemoglobin scavenging system in subarachnoid hemorrhage". Journal of Neurochemistry. 121 (5): 785–92. doi:10.1111/j.1471-4159.2012.07716.x. PMC   3412209 . PMID   22380637.
  13. Droste A, Sorg C, Högger P (March 1999). "Shedding of CD163, a novel regulatory mechanism for a member of the scavenger receptor cysteine-rich family". Biochemical and Biophysical Research Communications. 256 (1): 110–3. doi:10.1006/bbrc.1999.0294. PMID   10066432.
  14. Etzerodt A, Maniecki MB, Møller K, Møller HJ, Moestrup SK (December 2010). "Tumor necrosis factor α-converting enzyme (TACE/ADAM17) mediates ectodomain shedding of the scavenger receptor CD163". Journal of Leukocyte Biology. 88 (6): 1201–5. doi:10.1189/jlb.0410235. PMID   20807704. S2CID   38771947.
  15. Tornai T, Vitalis Z, Sipeki N, Dinya T, Tornai D, Antal-Szalmas P, Karanyi Z, Tornai I, Papp M (2016). "Macrophage activation marker, soluble CD163, is an independent predictor of short-term mortality in patients with cirrhosis and bacterial infection". Liver International. 36 (11): 1628–1638. doi:10.1111/liv.13133. hdl: 2437/223046 . ISSN   1478-3231. PMID   27031405. S2CID   206174528.
  16. Jones K, Vari F, Keane C, Crooks P, Nourse JP, Seymour LA, Gottlieb D, Ritchie D, Gill D, Gandhi MK (February 2013). "Serum CD163 and TARC as disease response biomarkers in classical Hodgkin lymphoma". Clinical Cancer Research. 19 (3): 731–42. doi: 10.1158/1078-0432.CCR-12-2693 . PMID   23224400.
  17. Møller HJ (February 2012). "Soluble CD163". Scandinavian Journal of Clinical and Laboratory Investigation. 72 (1): 1–13. doi:10.3109/00365513.2011.626868. PMID   22060747. S2CID   42546891.
  18. Garton TP, He Y, Garton HJ, Keep RF, Xi G, Strahle JM (15 March 2016). "Hemoglobin-induced neuronal degeneration in the hippocampnus after neonatal intraventricular hemorrhage". Brain Research. 1635: 86–94. doi:10.1016/j.brainres.2015.12.060. PMC   4801173 . PMID   26772987.
  19. Garton T, Keep RF, Hua Y, Xi G (April 6, 2017). "CD163, a Hemoglobin/Haptoglobin Scavenger Receptor, After Intracerebral Hemorrhage: Functions in Microglia/Macrophages Versus Neurons". Translational Stroke Research. 8 (6): 612–616. doi: 10.1007/s12975-017-0535-5 . PMID   28386733.
  20. Liu R, Cao S, Hua Y, Keep RF, Huang Y, Xi G (May 1, 2017). "CD163 Expression in Neurons After Experimental Intracerebral Hemorrhage". Stroke. 48 (5): 1369–1375. doi:10.1161/STROKEAHA.117.016850. PMC   5404936 . PMID   28360115.
  21. O'Reilly V (September 2016). "Urinary Soluble CD163 in Active Renal Vasculitis". J Am Soc Nephrol. 27 (9): 2906–2916. doi:10.1681/ASN.2015050511. PMC   5004645 . PMID   26940094.
  22. Etzerodt A, Rasmussen MR, Svendsen P, Chalaris A, Schwarz J, Galea I, Møller HJ, Moestrup SK (January 2014). "Structural basis for inflammation-driven shedding of CD163 ectodomain and tumor necrosis factor-α in macrophages". The Journal of Biological Chemistry. 289 (2): 778–88. doi: 10.1074/jbc.m113.520213 . PMC   3887204 . PMID   24275664.
  23. Etzerodt A, Kjolby M, Nielsen MJ, Maniecki M, Svendsen P, Moestrup SK (June 2013). "Plasma clearance of hemoglobin and haptoglobin in mice and effect of CD163 gene targeting disruption". Antioxidants & Redox Signaling. 18 (17): 2254–63. doi:10.1089/ars.2012.4605. PMID   22793784.
  24. Burkard C, Lillico SG, Reid E, Jackson B, Mileham AJ, Ait-Ali T, Whitelaw CB, Archibald AL (February 2017). "Precision engineering for PRRSV resistance in pigs: Macrophages from genome edited pigs lacking CD163 SRCR5 domain are fully resistant to both PRRSV genotypes while maintaining biological function". PLOS Pathogens. 13 (2): e1006206. doi: 10.1371/journal.ppat.1006206 . PMC   5322883 . PMID   28231264.
  25. Ritter M, Buechler C, Kapinsky M, Schmitz G (April 2001). "Interaction of CD163 with the regulatory subunit of casein kinase II (CKII) and dependence of CD163 signaling on CKII and protein kinase C". European Journal of Immunology. 31 (4): 999–1009. doi: 10.1002/1521-4141(200104)31:4<999::AID-IMMU999>3.0.CO;2-R . PMID   11298324.

Further reading