Ascalaph Designer

Last updated
Ascalaph Designer
DNA-in-Ascalaph-Designer.png
Ascalaph Designer renders deoxyribonucleic acid (DNA)
Original author(s) Alexei Nikitin
Developer(s) Agile Molecule
Stable release
1.8.94 / 3 December 2015;5 years ago (2015-12-03)
Written in C++
Operating system Windows
Platform x86
Size 138.9 MB
Available inEnglish
Type Molecular modelling
License GNU GPL and others including Code Project Open License
Website www.biomolecular-modeling.com/Ascalaph

Ascalaph Designer is a computer program for general purpose molecular modelling for molecular design and simulations. It provides a graphical environment for the common programs of quantum and classical molecular modelling ORCA, NWChem, Firefly, CP2K and MDynaMix [1] . [2] The molecular mechanics calculations cover model building, energy optimizations and molecular dynamics. Firefly (formerly named PC GAMESS) [3] [4] [5] covers a wide range of quantum chemistry methods. Ascalaph Designer is free and open-source software, released under the GNU General Public License, version 2 (GPLv2). [6]

Contents

Key features

Uses

See also

Related Research Articles

Solvation

Solvation describes the interaction of solvent with dissolved molecules. Both ionized and uncharged molecules interact strongly with solvent, and the strength and nature of this interaction influence many properties of the solute, including solubility, reactivity, and color, as well as influencing the properties of the solvent such as the viscosity and density. In the process of solvation, ions are surrounded by a concentric shell of solvent. Solvation is the process of reorganizing solvent and solute molecules into solvation complexes. Solvation involves bond formation, hydrogen bonding, and van der Waals forces. Solvation of a solute by water is called hydration.

Molecular dynamics Computer simulations to discover and understand chemical properties

Molecular dynamics (MD) is a computer simulation method for analyzing the physical movements of atoms and molecules. The atoms and molecules are allowed to interact for a fixed period of time, giving a view of the dynamic "evolution" of the system. In the most common version, the trajectories of atoms and molecules are determined by numerically solving Newton's equations of motion for a system of interacting particles, where forces between the particles and their potential energies are often calculated using interatomic potentials or molecular mechanics force fields. The method is applied mostly in chemical physics, materials science, and biophysics.

AMBER

Assisted Model Building with Energy Refinement (AMBER) is a family of force fields for molecular dynamics of biomolecules originally developed by Peter Kollman's group at the University of California, San Francisco. AMBER is also the name for the molecular dynamics software package that simulates these force fields. It is maintained by an active collaboration between David Case at Rutgers University, Tom Cheatham at the University of Utah, Adrian Roitberg at University of Florida, Ken Merz at Michigan State University, Carlos Simmerling at Stony Brook University, Ray Luo at UC Irvine, and Junmei Wang at Encysive Pharmaceuticals.

GROningen MOlecular Simulation (GROMOS) is the name of a force field for molecular dynamics simulation, and a related computer software package. Both are developed at the University of Groningen, and at the Computer-Aided Chemistry Group at the Laboratory for Physical Chemistry at the Swiss Federal Institute of Technology. At Groningen, Herman Berendsen was involved in its development.

Chemistry at Harvard Macromolecular Mechanics (CHARMM) is the name of a widely used set of force fields for molecular dynamics, and the name for the molecular dynamics simulation and analysis computer software package associated with them. The CHARMM Development Project involves a worldwide network of developers working with Martin Karplus and his group at Harvard to develop and maintain the CHARMM program. Licenses for this software are available, for a fee, to people and groups working in academia.

Molecular mechanics

Molecular mechanics uses classical mechanics to model molecular systems. The Born–Oppenheimer approximation is assumed valid and the potential energy of all systems is calculated as a function of the nuclear coordinates using force fields. Molecular mechanics can be used to study molecule systems ranging in size and complexity from small to large biological systems or material assemblies with many thousands to millions of atoms.

Ionic liquid

An ionic liquid (IL) is a salt in the liquid state. In some contexts, the term has been restricted to salts whose melting point is below some arbitrary temperature, such as 100 °C (212 °F). While ordinary liquids such as water and gasoline are predominantly made of electrically neutral molecules, ionic liquids are largely made of ions. These substances are variously called liquid electrolytes, ionic melts, ionic fluids, fused salts, liquid salts, or ionic glasses.

The fragment molecular orbital method (FMO) is a computational method that can compute very large molecular systems with thousands of atoms using ab initio quantum-chemical wave functions.

Carbon trioxide

Carbon trioxide (CO3) is an unstable oxide of carbon (an oxocarbon). The possible isomers of carbon trioxide include ones with molecular symmetry point groups Cs, D3h, and C2v. The C2v state, consisting of a dioxirane has been shown to be the ground state of the molecule. Carbon trioxide should not be confused with the stable carbonate ion (CO32−).

Water model

In computational chemistry, a water model is used to simulate and thermodynamically calculate water clusters, liquid water, and aqueous solutions with explicit solvent. The models are determined from quantum mechanics, molecular mechanics, experimental results, and these combinations. To imitate a specific nature of molecules, many types of models have been developed. In general, these can be classified by the following three points; (i) the number of interaction points called site, (ii) whether the model is rigid or flexible, (iii) whether the model includes polarization effects.

This is a list of computer programs that are predominantly used for molecular mechanics calculations.

Molecular modeling on GPUs

Molecular modeling on GPU is the technique of using a graphics processing unit (GPU) for molecular simulations.

MDynaMix

Molecular Dynamics of Mixtures (MDynaMix) is a computer software package for general purpose molecular dynamics to simulate mixtures of molecules, interacting by AMBER- and CHARMM-like force fields in periodic boundary conditions. Algorithms are included for NVE, NVT, NPT, anisotropic NPT ensembles, and Ewald summation to treat electrostatic interactions. The code was written in a mix of Fortran 77 and 90. The package runs on Unix and Unix-like (Linux) workstations, clusters of workstations, and on Windows in sequential mode.

This is a list of notable computer programs that are used for nucleic acids simulations.

Abalone (molecular mechanics)

Abalone is a general purpose molecular dynamics and molecular graphics program for simulations of bio-molecules in a periodic boundary conditions in explicit or in implicit water models. Mainly designed to simulate the protein folding and DNA-ligand complexes in AMBER force field.

Biochemical and Organic Simulation System (BOSS) is a general-purpose molecular modeling program that performs molecular mechanics calculations, Metropolis Monte Carlo statistical mechanics simulations, and semiempirical Austin Model 1 (AM1), PM3, and PDDG/PM3 quantum mechanics calculations. The molecular mechanics calculations cover energy minimizations, normal mode analysis and conformational searching with the Optimized Potentials for Liquid Simulations (OPLS) force fields. BOSS is developed by Prof. William L. Jorgensen at Yale University, and distributed commercially by Cemcomco, LLC and Schrödinger, Inc.

MacroModel is a computer program for molecular modelling of organic compounds and biopolymers. It features various chemistry force fields, plus energy minimizing algorithms, to predict geometry and relative conformational energies of molecules. MacroModel is maintained by Schrödinger, LLC.

Local elevation is a technique used in computational chemistry or physics, mainly in the field of molecular simulation. It was developed in 1994 by Huber, Torda and van Gunsteren to enhance the searching of conformational space in molecular dynamics simulations and is available in the GROMOS software for molecular dynamics simulation. The method was, together with the conformational flooding method , the first to introduce memory dependence into molecular simulations. Many recent methods build on the principles of the local elevation technique, including the Engkvist-Karlström , adaptive biasing force , Wang–Landau, metadynamics, adaptively biased molecular dynamics , adaptive reaction coordinate forces , and local elevation umbrella sampling methods. The basic principle of the method is to add a memory-dependent potential energy term in the simulation so as to prevent the simulation to revisit already sampled configurations, which leads to the increased probability of discovering new configurations. The method can be seen as a continuous variant of the Tabu search method.

Martini is a coarse-grained (CG) force field developed by Marrink and coworkers at the University of Groningen, initially developed in 2004 for molecular dynamics simulation of lipids, later (2007) extended to various other molecules. The force field applies a mapping of four heavy atoms to one CG interaction site and is parametrized with the aim of reproducing thermodynamic properties.

Klaas Wynne

Klaas Wynne is a Professor in the School of Chemistry at the University of Glasgow and chair of Chemical Physics. He was previously a professor in the Department of Physics at the University of Strathclyde (1996–2010).

References

  1. A.P.Lyubartsev, A.Laaksonen (2000). "MDynaMix - A scalable portable parallel MD simulation package for arbitrary molecular mixtures". Computer Physics Communications. 128 (3): 565–589. Bibcode:2000CoPhC.128..565L. doi:10.1016/S0010-4655(99)00529-9.
  2. A.P.Lyubartsev, A.Laaksonen (1998). "Parallel molecular dynamics simulations of biomolecular systems". Applied Parallel Computing Large Scale Scientific and Industrial Problems. Lecture Notes in Computer Science. 1541. Heidelberg: Springer Berlin. pp. 296–303. doi:10.1007/BFb0095310. ISBN   978-3-540-65414-8. S2CID   26892490.
  3. Computational Chemistry, David Young, Wiley-Interscience, 2001. Appendix A. A.2.3 pg 334, GAMESS
  4. M.W. Schmidt; et al. (1993). "General Atomic and Molecular Electronic Structure System". J. Comput. Chem. 14 (11): 1347–1363. doi:10.1002/jcc.540141112. S2CID   3358041.
  5. M. S. Gordon and M. W. Schmidt, Advances in electronic structure theory: GAMESS a decade later, in Theory and Applications of Computational Chemistry, the first 40 years, C. E. Dykstra, G. Frenking. K. S. Lim and G. E. Scusaria, Elsevier, Amsterdam, 2005.
  6. http://sourceforge.net/projects/asc-designer/
  7. Toukan K, Rahman A (1985). "Molecular-dynamics study of atomic motions in water". Physical Review B. 31 (5): 2643–2648. Bibcode:1985PhRvB..31.2643T. doi:10.1103/PhysRevB.31.2643. PMID   9936106.
  8. Y. Cheng, N. Korolev & L. Nordenskiöld (2006). "Similarities and differences in interaction of K+ and Na+ with condensed ordered DNA. A molecular dynamics computer simulation study". Nucleic Acids Research. 34 (2): 686–696. doi:10.1093/nar/gkj434. PMC   1356527 . PMID   16449204.
  9. C.-J. Högberg; A.M.Nikitin and A.P. Lyubartsev (2008). "Modification of the CHARMM force field for DMPC lipid bilayer". Journal of Computational Chemistry. 29 (14): 2359–2369. doi:10.1002/jcc.20974. PMID   18512235. S2CID   8599984.
  10. A. Vishnyakov & A.V. Neimark (2008). "Specifics of solvation of sulfonated polyelectrolytes in water, dimethylmethylphosphonate, and their mixture: A molecular simulation study". J. Chem. Phys. 128 (16): 164902. Bibcode:2008JChPh.128p4902V. doi:10.1063/1.2899327. PMID   18447495.
  11. G. Raabe & J. Köhler (2008). "Thermodynamical and structural properties of imidazolium based ionic liquids from molecular simulation". J. Chem. Phys. 128 (15): 154509. Bibcode:2008JChPh.128o4509R. doi:10.1063/1.2907332. PMID   18433237.
  12. X. Wu; Z. Liu; S. Huang; W. Wang (2005). "Molecular dynamics simulation of room-temperature ionic liquid mixture of [bmim][BF4] and acetonitrile by a refined force field". Phys. Chem. Chem. Phys. 7 (14): 2771–2779. Bibcode:2005PCCP....7.2771W. doi:10.1039/b504681p. PMID   16189592.
  13. T. Kuznetsova & B. Kvamme (2002). "Thermodynamic properties and interfacial tension of a model water–carbon dioxide system". Phys. Chem. Chem. Phys. 4 (6): 937–941. Bibcode:2002PCCP....4..937K. doi:10.1039/b108726f.
  14. A.M. Nikitin & A.P. Lyubartsev (2007). "A new six-site acetonitrile model for simulations of liquid acetonitril and its aqueous mixture". J. Comput. Chem. 28 (12): 2020–2026. doi:10.1002/jcc.20721. PMID   17450554. S2CID   5333395.