Bactericide

Last updated

A bactericide or bacteriocide, sometimes abbreviated Bcidal, is a substance which kills bacteria. Bactericides are disinfectants, antiseptics, or antibiotics. [1] However, material surfaces can also have bactericidal properties based solely on their physical surface structure, as for example biomaterials like insect wings.

Contents

Disinfectants

The most used disinfectants are those applying

Antiseptics

As antiseptics (i.e., germicide agents that can be used on human or animal body, skin, mucosae, wounds and the like), few of the above-mentioned disinfectants can be used, under proper conditions (mainly concentration, pH, temperature and toxicity toward humans and animals). Among them, some important are

Others are generally not applicable as safe antiseptics, either because of their corrosive or toxic nature.

Antibiotics

Bactericidal antibiotics kill bacteria; bacteriostatic antibiotics slow their growth or reproduction.

Bactericidal antibiotics that inhibit cell wall synthesis: the beta-lactam antibiotics (penicillin derivatives (penams), cephalosporins (cephems), monobactams, and carbapenems) and vancomycin.

Also bactericidal are daptomycin, fluoroquinolones, metronidazole, nitrofurantoin, co-trimoxazole, telithromycin.

Aminoglycosidic antibiotics are usually considered bactericidal, although they may be bacteriostatic with some organisms.

As of 2004, the distinction between bactericidal and bacteriostatic agents appeared to be clear according to the basic/clinical definition, but this only applies under strict laboratory conditions and it is important to distinguish microbiological and clinical definitions. [2] The distinction is more arbitrary when agents are categorized in clinical situations. The supposed superiority of bactericidal agents over bacteriostatic agents is of little relevance when treating the vast majority of infections with gram-positive bacteria, particularly in patients with uncomplicated infections and noncompromised immune systems. Bacteriostatic agents have been effectively used for treatment that are considered to require bactericidal activity. Furthermore, some broad classes of antibacterial agents considered bacteriostatic can exhibit bactericidal activity against some bacteria on the basis of in vitro determination of MBC/MIC values. At high concentrations, bacteriostatic agents are often bactericidal against some susceptible organisms. The ultimate guide to treatment of any infection must be clinical outcome.

Surfaces

Material surfaces can exhibit bactericidal properties because of their crystallographic surface structure.

Somewhere in the mid-2000s it was shown that metallic nanoparticles can kill bacteria. The effect of a silver nanoparticle for example depends on its size with a preferential diameter of about 110 nm to interact with bacteria. [3]

In 2013, cicada wings were found to have a selective anti-gram-negative bactericidal effect based on their physical surface structure. [4] Mechanical deformation of the more or less rigid nanopillars found on the wing releases energy, striking and killing bacteria within minutes, hence called a mechano-bactericidal effect. [5]

In 2020 researchers combined cationic polymer adsorption and femtosecond laser surface structuring to generate a bactericidal effect against both gram-positive Staphylococcus aureus and gram-negative Escherichia coli bacteria on borosilicate glass surfaces, providing a practical platform for the study of the bacteria-surface interaction. [6]

See also

Related Research Articles

<span class="mw-page-title-main">Chlorine</span> Chemical element, symbol Cl and atomic number 17

Chlorine is a chemical element; it has symbol Cl and atomic number 17. The second-lightest of the halogens, it appears between fluorine and bromine in the periodic table and its properties are mostly intermediate between them. Chlorine is a yellow-green gas at room temperature. It is an extremely reactive element and a strong oxidising agent: among the elements, it has the highest electron affinity and the third-highest electronegativity on the revised Pauling scale, behind only oxygen and fluorine.

An antiseptic is an antimicrobial substance or compound that is applied to living tissue to reduce the possibility of sepsis, infection or putrefaction. Antiseptics are generally distinguished from antibiotics by the latter's ability to safely destroy bacteria within the body, and from disinfectants, which destroy microorganisms found on non-living objects.

<span class="mw-page-title-main">Bacteriostatic agent</span> Agent that stops bacteria from reproducing

A bacteriostatic agent or bacteriostat, abbreviated Bstatic, is a biological or chemical agent that stops bacteria from reproducing, while not necessarily killing them otherwise. Depending on their application, bacteriostatic antibiotics, disinfectants, antiseptics and preservatives can be distinguished. When bacteriostatic antimicrobials are used, the duration of therapy must be sufficient to allow host defense mechanisms to eradicate the bacteria. Upon removal of the bacteriostat, the bacteria usually start to grow rapidly. This is in contrast to bactericides, which kill bacteria.

<span class="mw-page-title-main">Sodium hypochlorite</span> Chemical compound (known in solution as bleach)

Sodium hypochlorite is an alkaline inorganic chemical compound with the formula NaOCl. It is commonly known in a dilute aqueous solution as bleach or chlorine bleach. It is the sodium salt of hypochlorous acid, consisting of sodium cations and hypochlorite anions.

<span class="mw-page-title-main">Tincture of iodine</span> Antiseptic solution rubbed on skin before surgical operations

Tincture of iodine, iodine tincture, or weak iodine solution is an antiseptic. It is usually 2 to 3% elemental iodine, along with potassium iodide or sodium iodide, dissolved in a mixture of ethanol and water. Tincture solutions are characterized by the presence of alcohol. It was used from 1908 in pre-operative skin preparation by Italian surgeon Antonio Grossich.

<span class="mw-page-title-main">Disinfectant</span> Antimicrobial agent that inactivates or destroys microbes

A disinfectant is a chemical substance or compound used to inactivate or destroy microorganisms on inert surfaces. Disinfection does not necessarily kill all microorganisms, especially resistant bacterial spores; it is less effective than sterilization, which is an extreme physical or chemical process that kills all types of life. Disinfectants are generally distinguished from other antimicrobial agents such as antibiotics, which destroy microorganisms within the body, and antiseptics, which destroy microorganisms on living tissue. Disinfectants are also different from biocides—the latter are intended to destroy all forms of life, not just microorganisms. Disinfectants work by destroying the cell wall of microbes or interfering with their metabolism. It is also a form of decontamination, and can be defined as the process whereby physical or chemical methods are used to reduce the amount of pathogenic microorganisms on a surface.

<span class="mw-page-title-main">Benzalkonium chloride</span> Surfactant and antiseptic agent

Benzalkonium chloride, also known as alkyldimethylbenzylammonium chloride (ADBAC) and by the trade name Zephiran, is a type of cationic surfactant. It is an organic salt classified as a quaternary ammonium compound. ADBACs have three main categories of use: as a biocide, a cationic surfactant, and a phase transfer agent. ADBACs are a mixture of alkylbenzyldimethylammonium chlorides, in which the alkyl group has various even-numbered alkyl chain lengths.

<span class="mw-page-title-main">Hypochlorous acid</span> Chemical compound

Hypochlorous acid is an inorganic compound with the chemical formula ClOH, also written as HClO, HOCl, or ClHO. Its structure is H−O−Cl. It is an acid that forms when chlorine dissolves in water, and itself partially dissociates, forming hypochlorite anion, ClO. HClO and ClO are oxidizers, and the primary disinfection agents of chlorine solutions. HClO cannot be isolated from these solutions due to rapid equilibration with its precursor, chlorine.

<span class="mw-page-title-main">Hypochlorite</span> Ion

In chemistry, hypochlorite, or chloroxide is an anion with the chemical formula ClO. It combines with a number of cations to form hypochlorite salts. Common examples include sodium hypochlorite and calcium hypochlorite. The Cl-O distance in ClO is 1.69 Å.

<span class="mw-page-title-main">Chlorhexidine</span> Disinfectant and antiseptic

Chlorhexidine is a disinfectant and antiseptic with the molecular formula C22H30Cl2N10, which is used for skin disinfection before surgery and to sterilize surgical instruments. It is also used for cleaning wounds, preventing dental plaque, treating yeast infections of the mouth, and to keep urinary catheters from blocking. It is used as a liquid or a powder. It is commonly used in salt form, either the gluconate or the acetate.

An antimicrobial is an agent that kills microorganisms (microbicide) or stops their growth. Antimicrobial medicines can be grouped according to the microorganisms they act primarily against. For example, antibiotics are used against bacteria, and antifungals are used against fungi. They can also be classified according to their function. The use of antimicrobial medicines to treat infection is known as antimicrobial chemotherapy, while the use of antimicrobial medicines to prevent infection is known as antimicrobial prophylaxis.

<span class="mw-page-title-main">Quaternary ammonium cation</span> Polyatomic ions of the form N(–R)₄ (charge +1)

In organic chemistry, quaternary ammonium cations, also known as quats, are positively-charged polyatomic ions of the structure [NR4]+, where R is an alkyl group, an aryl group or organyl group. Unlike the ammonium ion and the primary, secondary, or tertiary ammonium cations, the quaternary ammonium cations are permanently charged, independent of the pH of their solution. Quaternary ammonium salts or quaternary ammonium compounds are salts of quaternary ammonium cations. Polyquats are a variety of engineered polymer forms which provide multiple quat molecules within a larger molecule.

<span class="mw-page-title-main">Sodium chlorite</span> Chemical compound

Sodium chlorite (NaClO2) is a chemical compound used in the manufacturing of paper and as a disinfectant.

<i>Burkholderia cepacia</i> complex Species of bacterium

Burkholderia cepacia complex (BCC) is a species complex consisting of Burkholderia cepacia and at least 20 different biochemically similar species of Gram-negative bacteria. They are catalase-producing and lactose-nonfermenting. Members of BCC are opportunistic human pathogens that most often cause pneumonia in immunocompromised individuals with underlying lung disease. Patients with sickle-cell haemoglobinopathies are also at risk. The species complex also attacks young onion and tobacco plants, and displays a remarkable ability to digest oil.

Dakin's solution is a dilute solution of sodium hypochlorite and other stabilizing ingredients, traditionally used as an antiseptic, e.g. to cleanse wounds in order to prevent infection. The preparation was for a time called also Carrel–Dakin solution or Carrel–Dakin fluid.

<span class="mw-page-title-main">Benzethonium chloride</span> Chemical compound

Benzethonium chloride, also known as hyamine is a synthetic quaternary ammonium salt. This compound is an odorless white solid, soluble in water. It has surfactant, antiseptic, and anti-infective properties, and it is used as a topical antimicrobial agent in first aid antiseptics. It is also found in cosmetics and toiletries such as soap, mouthwashes, anti-itch ointments, and antibacterial moist towelettes. Benzethonium chloride is also used in the food industry as a hard surface disinfectant.

<span class="mw-page-title-main">Polyaminopropyl biguanide</span> Chemical compound

Polyaminopropyl biguanide (PAPB) is a disinfectant and a preservative used for disinfection on skin and in cleaning solutions for contact lenses. It is also an ingredient in many deodorant bodysprays. It is a polymer or oligomer where biguanide functional groups are connected by propyl hydrocarbon chains. PAPB is specifically bactericidal at very low concentrations (10 mg/L) and is also fungicidal.

<span class="mw-page-title-main">Bleach</span> Chemicals used to whiten or disinfect

Bleach is the generic name for any chemical product that is used industrially or domestically to remove colour (whitening) from fabric or fiber or to disinfect after cleaning. It often refers specifically to a dilute solution of sodium hypochlorite, also called "liquid bleach".

A virucide is any physical or chemical agent that deactivates or destroys viruses. The substances are not only virucidal but can be also bactericidal, fungicidal, sporicidal or tuberculocidal.

Polymers with the ability to kill or inhibit the growth of microorganisms such as bacteria, fungi, or viruses are classified as antimicrobial agents. This class of polymers consists of natural polymers with inherent antimicrobial activity and polymers modified to exhibit antimicrobial activity. Polymers are generally nonvolatile, chemically stable, and can be chemically and physically modified to display desired characteristics and antimicrobial activity. Antimicrobial polymers are a prime candidate for use in the food industry to prevent bacterial contamination and in water sanitation to inhibit the growth of microorganisms in drinking water.

References

  1. McDonnell, G; Russell, AD (1999). "Antiseptics and Disinfectants: Activity, Action, and Resistance". Clin Microbiol Rev. 12 (1): 147–179. doi:10.1128/cmr.12.1.147. PMC   88911 . PMID   9880479.
  2. Pankey, GA; Sabath, LD (2004). "Clinical Relevance of Bacteriostatic versus Bactericidal Mechanisms of Action in the Treatment of Gram-Positive Bacterial Infections". Clin Infect Dis. 38 (6): 864–870. doi: 10.1086/381972 . PMID   14999632.
  3. Morones, Jose Ruben; Elechiguerra, Jose Luis; Camacho, Alejandra; Holt, Katherine; Kouri, Juan B; Ramírez, Jose Tapia; Yacaman, Miguel Jose (2005-10-01). "The bactericidal effect of silver nanoparticles". Nanotechnology. 16 (10): 2346–2353. Bibcode:2005Nanot..16.2346R. doi:10.1088/0957-4484/16/10/059. ISSN   0957-4484. PMID   20818017.
  4. Hasan, Jafar; Webb, Hayden K.; Truong, Vi Khanh; Pogodin, Sergey; Baulin, Vladimir A.; Watson, Gregory S.; Watson, Jolanta A.; Crawford, Russell J.; Ivanova, Elena P. (October 2013). "Selective bactericidal activity of nanopatterned superhydrophobic cicada Psaltoda claripennis wing surfaces". Applied Microbiology and Biotechnology. 97 (20): 9257–9262. doi:10.1007/s00253-012-4628-5. ISSN   0175-7598. PMID   23250225. S2CID   16568909.
  5. Ivanova, Elena P.; Linklater, Denver P.; Werner, Marco; Baulin, Vladimir A.; Xu, XiuMei; Vrancken, Nandi; Rubanov, Sergey; Hanssen, Eric; Wandiyanto, Jason; Truong, Vi Khanh; Elbourne, Aaron (2020-06-09). "The multi-faceted mechano-bactericidal mechanism of nanostructured surfaces". Proceedings of the National Academy of Sciences. 117 (23): 12598–12605. Bibcode:2020PNAS..11712598I. doi: 10.1073/pnas.1916680117 . ISSN   0027-8424. PMC   7293705 . PMID   32457154.
  6. Chen, C.; Enrico, A.; et al. (2020). "Bactericidal surfaces prepared by femtosecond laser patterning and layer-by-layer polyelectrolyte coating". Journal of Colloid and Interface Science. 575: 286–297. Bibcode:2020JCIS..575..286C. doi: 10.1016/j.jcis.2020.04.107 . PMID   32380320.