Binary compounds of silicon

Last updated
Experimental iron-silicon phase diagram Diagramme binaire Fe Si analyse thermique 30.svg
Experimental iron-silicon phase diagram

Binary compounds of silicon are binary chemical compounds containing silicon and one other chemical element. [1] Technically the term silicide is reserved for any compounds containing silicon bonded to a more electropositive element. Binary silicon compounds can be grouped into several classes. Saltlike silicides are formed with the electropositive s-block metals. Covalent silicides and silicon compounds occur with hydrogen and the elements in groups 10 to 17.

Contents

Transition metals form metallic silicides, with the exceptions of silver, gold and the group 12 elements. The general composition is MnSi or MSin with n ranging from 1 to 6 and M standing for metal. Examples are M5Si, M3Si (Cu, V, Cr, Mo, Mn, Fe, Pt, U), M2Si (Zr, Hf, Ta, Ir, Ru, Rh, Co, Ni, Ce), M3Si2 (Hf, Th, U), MSi (Ti, Zr, Hf, Fe, Ce, Th, Pu) and MSi2 (Ti, V, Nb, Ta, Cr, Mo, W, Re).

The Kopp–Neumann law applies; heat capacities are linear in the proportion of silicon:

As a general rule, nonstochiometry implies instability. These intermetallics are in general resistant to hydrolysis, brittle, and melt at a lower temperature than the corresponding carbides or borides. They are electrical conductors. However, some, such as CrSi2, Mg2Si, β-FeSi2 and MnSi1.7, are semiconductors. Since degenerate semiconductors exhibit some metallic properties, such as luster and electrical conductivity which decreases with temperature, some silicides classified as metals may be semiconductors.

Group 1

Silicides of group 1 elements are saltlike silicides, except for silane (SiH4) whose bonds to hydrogen are covalent. Higher silane homologues are disilane and trisilane. Polysilicon hydride is a two-dimensional polymer network.

Many cluster compounds of lithium silicides are known, such as Li13Si4, Li22Si5, Li7Si3 and Li12Si7. [2] Li4.4Si is prepared from silicon and lithium metal in high-energy Ball mill process. [3] Potential uses include electrodes in lithium batteries. Li12Si7 has a Zintl phase with planar Si56− rings. Li NMR spectroscopy suggests these rings are aromatic. [4]

Other group 1 elements also form clusters: sodium silicide can be represented by NaSi, NaSi2 and Na11Si36 [5] and potassium silicide by K8Si46. Group 1 silicides are in general high melting, metallic grey, with moderate to poor electrical conductance and prepared by heating the elements. Superconducting properties have been reported for Ba8Si46. [6] Several silicon Zintl ions (Si4−
4
, Si4−
9
, Si2−
5
) are known with group 1 counterions. [7]

Group 2

Silicides of group 2 elements are also saltlike silicides except for beryllium whose phase diagram with silicon is a simple eutectic (1085 °C @ 60% by weight silicon). [8] Again there is variation in composition: magnesium silicide is represented by Mg2Si, [9] calcium silicide can be represented by Ca2Si, CaSi, CaSi2, Ca5Si3 and by Ca14Si19, [10] strontium silicide can be represented by Sr2Si, SrSi2 and Sr5Si3 [11] and barium silicide can be represented by Ba2Si, BaSi2, Ba5Si3 and Ba3Si4. [12] Mg2Si, and its solid solutions with Mg2Ge and Mg2Sn, are good thermoelectric materials and their figure of merit values are comparable with those of established materials.

Transition and inner transition metals

The transition metals form a wide range of silicon intermetallics with at least one binary crystalline phase. Some exceptions exist. Gold forms a eutectic at 363 °C with 2.3% silicon by weight (18% atom percent) without mutual solubility in the solid state. [13] Silver forms another eutectic at 835 °C with 11% silicon by weight, again with negligible mutual solid state solubility. In group 12 all elements form a eutectic close to the metal melting point without mutual solid-state solubility: zinc at 419 °C and > 99 atom percent zinc and cadmium at 320 °C (< 99% Cd).

Commercially relevant intermetallics are group 6 molybdenum disilicide, a commercial ceramic mostly used as an heating element. Tungsten disilicide is also a commercially available ceramic with uses in microelectronics. Platinum silicide is a semiconductor material. Ferrosilicon is an iron alloy that also contains some calcium and aluminium.

MnSi, known as brownleeite, can be found in outer space. Several Mn silicides form a Nowotny phase. Nanowires based on silicon and manganese can be synthesised from Mn(CO)5SiCl3 forming nanowires based on Mn19Si33. [14] or grown on a silicon surface [15] [16] [17] MnSi1.73 was investigated as thermoelectric material [18] and as an optoelectronic thin film. [19] Single-crystal MnSi1.73 can form from a tin-lead melt [20]

In the frontiers of technological research, iron disilicide is becoming more and more relevant to optoelectronics, specially in its crystalline form β-FeSi2. [21] [22] They are used as thin films or as nanoparticles, obtained by means of epitaxial growth on a silicon substrate. [23] [24]

Atomic number Name Symbol Group Period Block Phases
21 Scandium Sc34dSc5Si3, ScSi, Sc2Si3, [25] [26] [27] [28]
22 Titanium Ti44dTi5Si3, TiSi, TiSi2, TiSi3, Ti6Si4 [25]
23 Vanadium V54dV3Si, V5Si3, V6Si5, VSi2, V6Si5 [25] [29]
24 Chromium Cr64dCr3Si, Cr5Si3, CrSi, CrSi2 [25] [30]
25 Manganese Mn74dMnSi, Mn9Si2, Mn3Si, Mn5Si3, Mn11Si9 [25]
26 Iron Fe84d FeSi2, FeSi [31] [32] Fe5Si3, Fe2Si, Fe3Si
27 Cobalt Co94dCoSi, CoSi2, Co2Si, Co2Si, Co3Si [33] [34]
28 Nickel Ni104dNi3Si, Ni31Si12, Ni2Si, Ni3Si2, NiSi (Nickel monosilicide), NiSi2 [25] [35]
29 Copper Cu114dCu17Si3, Cu56Si11,Cu5Si, Cu33Si7, Cu4Si, Cu19Si6,Cu3Si,Cu87Si13 [25] [36]
30 Zinc Zn124deutectic [37]
39 Yttrium Y34dY5Si3, Y5Si4, YSi, Y3Si5, [38] [39] YSi1.4. [40]
40 Zirconium Zr45dZr5Si3, Zr5Si4, ZrSi, ZrSi2, [25] Zr3Si2, Zr2Si, Zr3Si [41]
41 Niobium Nb55dNb5Si3, Nb4Si [25]
42 Molybdenum Mo65dMo3Si, Mo5Si3, MoSi2 [25]
43 Technetium Tc75dTc4Si7 (proposed) [42]
44 Ruthenium Ru85dRu2Si, Ru4Si3, RuSi, Ru2Si3 [43] [44]
45 Rhodium Rh95dRhSi, [45] Rh2Si, Rh5Si3, Rh3Si2, Rh20Si13 [46]
46 Palladium Pd105dPd5Si, Pd9Si2, Pd3Si, Pd2Si, PdSi [47]
47 Silver Ag115deutectic [48]
48 Cadmium Cd125deutectic [49]
57 Lanthanum La6fLa5Si3, La3Si2, La5Si4, LaSi, LaSi2 [50]
58 Cerium Ce6fCe5Si3, Ce3Si2, Ce5Si4, CeSi, [51] Ce3Si5, CeSi2 [52]
59 Praseodymium Pr6fPr5Si3, Pr3Si2, Pr5Si4, PrSi, PrSi2 [53]
60 Neodymium Nd6fNd5Si3, Nd5Si4, Nd5Si3,NdSi, Nd3Si4, Nd2Si3, NdSix [54]
61 Promethium Pm6f
62 Samarium Sm6fSm5Si4, Sm5Si3, SmSi, Sm3Si5, SmSi2 [55]
63 Europium Eu6f
64 Gadolinium Gd6fGd5Si3, Gd5Si4, GdSi, GdSi2 [56]
65 Terbium Tb6fSi2Tb (terbium silicide), SiTb, Si4Tb5, Si3Tb5 [57]
66 Dysprosium Dy6fDy5Si5, DySi, DySi2 [58]
67 Holmium Ho6fHo5Si3,Ho5Si4,HoSi,Ho4Si5,HoSi2 [59]
68 Erbium Er6fEr5Si3, Er5Si4, ErSi, ErSi2 [60]
69 Thulium Tm6f
70 Ytterbium Yb6fSi1.8Yb,Si5Yb3,Si4Yb3, SiYb, Si4Yb5, Si3Yb5 [61]
71 Lutetium Lu36dLu5Si3 [62]
72 Hafnium Hf46dHf2Si, Hf3Si2, HfSi, Hf5Si4, HfSi2 [25] [63]
73 Tantalum Ta56dTa9Si2, Ta3Si, Ta5Si3 [25]
74 Tungsten W66dW5Si3, WSi2 [64]
75 Rhenium Re76dRe2Si, ReSi, ReSi1.8 [65] Re5Si3 [25]
76 Osmium Os86dOsSi, Os2Si3, OsSi2 [66]
77 Iridium Ir96dIrSi, Ir4Si5, Ir3Si4, Ir3Si5, IrSi3. Ir2Si3, Ir4Si7, IrSi2 [67] [68]
78 Platinum Pt106dPt25Si7, Pt17Si8, Pt6Si5, Pt5Si2, Pt3Si, Pt2Si, PtSi [69]
79 Gold Au116d Eutectic diagram at link [70]
80 Mercury Hg126deutectic [71]
89 Actinium Ac7f
90 Thorium Th7fTh3Si2, ThSi, Th3Si5, and ThSi2−x [72]
91 Protactinium Pa7f
92 Uranium U7fU3Si, U3Si2, USi, U3Si5, USi2−x, USi2 and USi3 [73]
93 Neptunium Np7fNpSi3, Np3Si2, and NpSi [74]
94 Plutonium Pu7fPu5Si3, Pu3Si2, PuSi, Pu3Si5 and PuSi2 [75]
95 Americium Am7fAmSi, AmSi2 [76]
96 Curium Cm7fCmSi, Cm2Si3, CmSi2 [77]
97 Berkelium Bk7f
98 Californium Cf7f
99 Einsteinium Es7f
100 Fermium Fm7f
101 Mendelevium Md7f
102 Nobelium No7f
103 Lawrencium Lr37d
104 Rutherfordium Rf47d
105 Dubnium Db57d
106 Seaborgium Sg67d
107 Bohrium Bh77d
108 Hassium Hs87d
109 Meitnerium Mt97d
110 Darmstadtium Ds107d
111 Roentgenium Rg117d
112 Copernicium Cn127d

Group 13

In group 13 boron (a metalloid) forms several binary crystalline silicon boride compounds: SiB3, SiB6, SiBn. [78] With aluminium, a post-transition metal, a eutectic is formed (577 °C @ 12.2 atom % Al) with maximum solubility of silicon in solid aluminium of 1.5%. Commercially relevant aluminium alloys containing silicon have at least element added. [79] Gallium, also a post-transition metal, forms a eutectic at 29 °C with 99.99% Ga without mutual solid-state solubility; [80] indium [81] and thallium [82] behave similarly.

Group 14

Silicon carbide (SiC) is widely used as a ceramic or example in car brakes and bulletproof vests. It is also used in semiconductor electronics. It is manufactured from silicon dioxide and carbon in an Acheson furnace between 1600 and 2500 °C. There are 250 known crystalline forms with alpha silicon carbide the most common. Silicon itself is an important semiconductor material used in microchips. It is produced commercially from silica and carbon at 1900 °C and crystallizes in a diamond cubic crystal structure. Germanium silicide forms a solid solution and is again a commercially used semiconductor material. [83] The tin–silicon phase diagram is a eutectic [84] and the lead–silicon phase diagram shows a monotectic transition and a small eutectic transition but no solid solubility. [85]

Group 15

Silicon nitride (Si3N4) is a ceramic with many commercial high-temperature applications such as engine parts. It can be synthesized from the elements at temperatures between 1300 and 1400 °C. Three different crystallographic forms exist. Other binary silicon nitrogen compounds have been proposed (SiN, Si2N3, Si3N) [86] and other SiN compounds have been investigated at cryogenic temperatures (SiN2, Si(N2)2, SiNNSi). [87] Silicon tetraazide is an unstable compound that easily detonates.

The phase diagram with phosphorus shows SiP and SiP2. [88] A reported silicon phosphide is Si12P5 (no practical applications), [89] [90] formed by annealing an amorphous Si-P alloy.

The arsenic–silicon phase diagram measured at 40 Bar has two phases: SiAs and SiAs2. [91] The antimony–silicon system comprises a single eutectic close to the melting point of Sb. [92] The bismuth system is a monotectic. [93]

Group 16

In group 16 silicon dioxide is a very common compound that widely occurs as sand or quartz. SiO2 is tetrahedral with each silicon atom surrounded by 4 oxygen atoms. Numerous crystalline forms exist with the tetrahedra linked to form a polymeric chain. Examples are tridymite and cristobalite. A less common oxide is silicon monoxide that can be found in outer space. Unconfirmed reports exist for nonequilibrium Si2O, Si3O2, Si3O4, Si2O3 and Si3O5. [94] Silicon sulfide is also a chain compound. Cyclic SiS2 has been reported to exist in the gas phase. [95] The phase diagram of silicon with selenium has two phases: SiSe2 and SiSe. [96] Tellurium silicide is a semiconductor with formula TeSi2 or Te2Si3. [97]

Group 17

Binary silicon compounds in group 17 are stable compounds ranging from gaseous silicon fluoride (SiF4) to the liquids silicon chloride (SiCl4 and silicon bromide SiBr4) to the solid silicon iodide (SiI4). The molecular geometry in these compounds is tetrahedral and the bonding mode covalent. Other known stable fluorides in this group are Si2F6, Si3F8 (liquid) and polymeric solids known as polysilicon fluorides (SiF2)x and (SiF)x. The other halides form similar binary silicon compounds. [98]

The periodic table of the binary silicon compounds

SiH4 He
LiSiBe SiB3 SiC Si3N4 SiO2 SiF4 Ne
NaSi Mg2Si Al Si SiP SiS2 SiCl4 Ar
KSi CaSi2 ScSiTiSiV5Si3Cr5Si3 MnSi FeSi CoSi NiSi Cu5Si ZnGa Si1−xGex SiAsSiSe2 SiBr4 Kr
RbSiSr2SiYSiZrSiNb5Si3Mo5Si3TcRuSiRhSiPdSiAgCdInSnSbTeSi2 SiI4 Xe
CsSiBa2SiLuSiHfSiTa5Si3W5Si3ReSi2OsSiIrSi PtSi AuHgTlPbBiPoAtRn
FrRaLrRfDbSgBhHsMtDsRgCnNhFlMcLvTsOg
LaSiCeSiPrSiNdSiPmSmSiEuSiGdSiTbSiDySiHoSiErSiTmYbSi
AcThSi PaUSi NpSiPuSiAmSiCmSiBkCfEsFmMdNo
Binary compounds of silicon
Covalent silicon compoundsmetallic silicides.
Ionic silicidesDo not exist
Eutectic / monotectic / solid solutionUnknown / Not assessed

Related Research Articles

<span class="mw-page-title-main">Magnesium silicide</span> Chemical compound

Magnesium silicide, Mg2Si, is an inorganic compound consisting of magnesium and silicon. As-grown Mg2Si usually forms black crystals; they are semiconductors with n-type conductivity and have potential applications in thermoelectric generators.

<span class="mw-page-title-main">Silicide</span> Chemical compound that combines silicon and a more electropositive element

A silicide is a type of chemical compound that combines silicon and a usually more electropositive element.

<span class="mw-page-title-main">Ferrosilicon</span>

Ferrosilicon is an alloy of iron and silicon with a typical silicon content by weight of 15–90%. It contains a high proportion of iron silicides.

<span class="mw-page-title-main">A15 phases</span>

The A15 phases (also known as β-W or Cr3Si structure types) are series of intermetallic compounds with the chemical formula A3B (where A is a transition metal and B can be any element) and a specific structure. The A15 phase is also one of the members in the Frank–Kasper phases family. Many of these compounds have superconductivity at around 20 K (−253 °C; −424 °F), which is comparatively high, and remain superconductive in magnetic fields of tens of teslas (hundreds of kilogauss). This kind of superconductivity (Type-II superconductivity) is an important area of study as it has several practical applications.

<span class="mw-page-title-main">Calcium disilicide</span> Chemical compound

Calcium disilicide (CaSi2) is an inorganic compound, a silicide of calcium. It is a whitish or dark grey to black solid matter with melting point 1033 °C. It is insoluble in water, but may decompose when subjected to moisture, evolving hydrogen and producing calcium hydroxide. It decomposes in hot water, and is flammable and may ignite spontaneously in air.

Binary compounds of hydrogen are binary chemical compounds containing just hydrogen and one other chemical element. By convention all binary hydrogen compounds are called hydrides even when the hydrogen atom in it is not an anion. These hydrogen compounds can be grouped into several types.

<span class="mw-page-title-main">Eutectic bonding</span>

Eutectic bonding, also referred to as eutectic soldering, describes a wafer bonding technique with an intermediate metal layer that can produce a eutectic system. Those eutectic metals are alloys that transform directly from solid to liquid state, or vice versa from liquid to solid state, at a specific composition and temperature without passing a two-phase equilibrium, i.e. liquid and solid state. The fact that the eutectic temperature can be much lower than the melting temperature of the two or more pure elements can be important in eutectic bonding.

Scandium hydride, also known as scandium–hydrogen alloy, is an alloy made by combining scandium and hydrogen. Hydrogen acts as a hardening agent, preventing dislocations in the scandium atom crystal lattice from sliding past one another. Varying the amount of hydrogen controls qualities such as the hardness of the resulting scandium hydride. Scandium hydride with increased hydrogen content can be made harder than scandium.

<span class="mw-page-title-main">Chromium(III) boride</span> Chemical compound

Chromium(III) boride, also known as chromium monoboride (CrB), is an inorganic compound with the chemical formula CrB. It is one of the six stable binary borides of chromium, which also include Cr2B, Cr5B3, Cr3B4, CrB2, and CrB4. Like many other transition metal borides, it is extremely hard (21-23 GPa), has high strength (690 MPa bending strength), conducts heat and electricity as well as many metallic alloys, and has a high melting point (~2100 °C). Unlike pure chromium, CrB is known to be a paramagnetic, with a magnetic susceptibility that is only weakly dependent on temperature. Due to these properties, among others, CrB has been considered as a candidate material for wear resistant coatings and high-temperature diffusion barriers.

<span class="mw-page-title-main">Nickel silicide</span> Chemical compound

Nickel silicides include several intermetallic compounds of nickel and silicon. Nickel silicides are important in microelectronics as they form at junctions of nickel and silicon. Additionally thin layers of nickel silicides may have application in imparting surface resistance to nickel alloys.

<span class="mw-page-title-main">Nickel monosilicide</span> Chemical compound

Nickel monosilicide is an intermetallic compound formed out of nickel and silicon. Like other nickel silicides, NiSi is of importance in the area of microelectronics.

Phosphide silicides or silicide phosphides or silicophosphides are compounds containing anions composed of silicide (Si4−) and phosphide (P3−). They can be considered as mixed anion compounds. They are distinct from the phosphidosilicates, which have the phosphorus bonded to the silicon. Related compounds include the phosphide carbides, germanide phosphides, nitride silicides, and antimonide silicides.

Silicide carbides or carbide silicides are compounds containing anions composed of silicide (Si4−) and carbide (C4−) or clusters therof. They can be considered as mixed anion compounds or intermetallic compounds, as silicon could be considered as a semimetal.

A silicide hydride is a mixed anion compound that contains silicide (Si4− or clusters) and hydride (H) anions. The hydrogen is not bound to silicon in these compounds. These can be classed as interstitial hydrides, Hydrogenated zintl phases, or Zintl phase hydrides. In the related silanides, SiH3 anions or groups occur. Where hydrogen is bonded to the silicon, this is a case of anionic hydride, and where it is bonded to a more complex anion, it would be termed polyanionic hydride.

Lithium telluride (Li2Te) is an inorganic compound of lithium and tellurium. Along with LiTe3, it is one of the two intermediate solid phases in the lithium-tellurium system. It can be prepared by directly reacting lithium and tellurium in a beryllium oxide crucible at 950°C.

<span class="mw-page-title-main">Neodymium bismuthide</span> Chemical compound

Neodymium bismuthide or Bismuth-Neodymium is a binary inorganic compound of neodymium and bismuth with the formula NdBi. It forms crystals.

<span class="mw-page-title-main">Dmitri Konovalov</span>

Dmitri Petrovich Konovalov was a Russian-Soviet physical chemist who worked on gas-liquid phases of solutions in equilibrium and came up with several rules that were also independently worked on by J. Willard Gibbs and the rules are often called Gibbs-Konovalov rules. They provide the basis for distillation and separation of components that form azeotropes.

<span class="mw-page-title-main">Barium selenide</span> Chemical compound

Barium selenide is an inorganic compound, with the chemical formula of BaSe. It is a white solid although typically samples are colored owing to the effects of air oxidation.

<span class="mw-page-title-main">Praseodymium arsenide</span> Chemical compound

Praseodymium arsenide is a binary inorganic compound of praseodymium and arsenic with the formula PrAs.

While chemically pure materials have a single melting point, chemical mixtures often partially melt at the solidus temperature (TS or Tsol), and fully melt at the higher liquidus temperature (TL or Tliq). The solidus is always less than or equal to the liquidus, but they need not coincide. If a gap exists between the solidus and liquidus it is called the freezing range, and within that gap, the substance consists of a mixture of solid and liquid phases (like a slurry). Such is the case, for example, with the olivine (forsterite-fayalite) system, which is common in Earth's mantle.

References

  1. Inorganic chemistry, Egon Wiberg, Nils Wiberg, Arnold Frederick Holleman
  2. Okamoto, H. (1990). "The Li-Si (Lithium-Silicon) system". Bulletin of Alloy Phase Diagrams. Springer Science and Business Media LLC. 11 (3): 306–312. doi:10.1007/bf03029305. ISSN   0197-0216.
  3. Solid state ionics for batteries, Tsutomu Minami, Masahiro Tatsumisago
  4. Dupke, Sven; Langer, Thorsten; Pöttgen, Rainer; Winter, Martin; Eckert, Hellmut (2012). "Structural and dynamic characterization of Li12Si7 and Li12Ge7 using solid state NMR". Solid State Nuclear Magnetic Resonance. Elsevier BV. 42: 17–25. doi:10.1016/j.ssnmr.2011.09.002. ISSN   0926-2040. PMID   21996453.
  5. Songster, J; Pelton, A.D (1992). "The na-si (sodium-silicon) system". Journal of Phase Equilibria. Springer Science and Business Media LLC. 13 (1): 67–69. doi:10.1007/bf02645381. ISSN   1054-9714. S2CID   95520630.
  6. Yamanaka, Shoji; Enishi, Eiji; Fukuoka, Hiroshi; Yasukawa, Masahiro (1999-12-17). "High-Pressure Synthesis of a New Silicon Clathrate Superconductor, Ba8Si46". Inorganic Chemistry. American Chemical Society (ACS). 39 (1): 56–58. doi:10.1021/ic990778p. ISSN   0020-1669. PMID   11229033.
  7. Scharfe, Sandra; Kraus, Florian; Stegmaier, Saskia; Schier, Annette; Fässler, Thomas F. (2011-03-31). "Zintl Ions, Cage Compounds, and Intermetalloid Clusters of Group 14 and Group 15 Elements". Angewandte Chemie International Edition. Wiley. 50 (16): 3630–3670. doi:10.1002/anie.201001630. ISSN   1433-7851. PMID   21455921.
  8. Okamoto, H. (2008-12-06). "Be-Si (Beryllium-Silicon)". Journal of Phase Equilibria and Diffusion. Springer Science and Business Media LLC. 30 (1): 115. doi: 10.1007/s11669-008-9433-6 . ISSN   1547-7037. S2CID   96368677.
  9. Nayeb-Hashemi, A. A.; Clark, J. B. (1984). "The Mg−Si (Magnesium-Silicon) system". Bulletin of Alloy Phase Diagrams. Springer Science and Business Media LLC. 5 (6): 584–592. doi:10.1007/bf02868321. ISSN   0197-0216.
  10. Currao, Antonio; Wengert, Steffen; Nesper, Reinhard; Curda, Jan; Hillebrecht, H. (1996). "Ca14Si19 - a Zintl Phase with a Novel Twodimensional Silicon Framework". Zeitschrift für anorganische und allgemeine Chemie (in German). Wiley. 622 (3): 501–508. doi:10.1002/zaac.19966220319. ISSN   0044-2313.
  11. Itkin, V. P.; Alcock, C. B. (1989). "The Si-Sr (Silicon-Strontium) system". Bulletin of Alloy Phase Diagrams. Springer Science and Business Media LLC. 10 (6): 630–634. doi:10.1007/bf02877630. ISSN   0197-0216.
  12. Aydemir, Umut; Ormeci, Alim; Borrmann, Horst; Böhme, Bodo; Zürcher, Fabio; et al. (2008). "The Metallic Zintl Phase Ba3Si4- Synthesis, Crystal Structure, Chemical Bonding, and Physical Properties". Zeitschrift für anorganische und allgemeine Chemie. Wiley. 634 (10): 1651–1661. doi:10.1002/zaac.200800116. ISSN   0044-2313.
  13. Constitution of Binary Alloys, second edition, Max Hansen and Kurt Anderko, McGraw-Hill Book Co., (NY NY 1958) p. 232 and EG Heath, J. of Electro Control, 11, 1961, pp 13-15 as summarized in Constitution of Binary Alloys, First Supplement, Elliott, McGraw-Hill Book Inc., (NY NY 1965) p. 103
  14. Higgins, Jeremy M.; Schmitt, Andrew L.; Guzei, Ilia A.; Jin, Song (2008-11-05). "Higher Manganese Silicide Nanowires of Nowotny Chimney Ladder Phase". Journal of the American Chemical Society. American Chemical Society (ACS). 130 (47): 16086–16094. doi:10.1021/ja8065122. ISSN   0002-7863. PMID   18983151.
  15. Wang, Dan; Zou, Zhi-Qiang (2009-06-17). "Formation of manganese silicide nanowires on Si(111) surfaces by the reactive epitaxy method". Nanotechnology. IOP Publishing. 20 (27): 275607. Bibcode:2009Nanot..20A5607W. doi:10.1088/0957-4484/20/27/275607. ISSN   0957-4484. PMID   19531857. S2CID   35197350.
  16. Krause, M. R.; Stollenwerk, A.; Licurse, M.; LaBella, V. P. (2006). "Ostwald ripening of manganese silicide islands on Si(001)". Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films. American Vacuum Society. 24 (4): 1480–1483. Bibcode:2006JVSTA..24.1480K. doi:10.1116/1.2167070. ISSN   0734-2101.
  17. Wang, Jinliang; Hirai, Masaaki; Kusaka, Masahiko; Iwami, Motohiro (1997). "Preparation of manganese silicide thin films by solid phase reaction". Applied Surface Science. Elsevier BV. 113–114: 53–56. Bibcode:1997ApSS..113...53W. doi:10.1016/s0169-4332(96)00823-9. ISSN   0169-4332.
  18. Itoh, Takashi; Yamada, Masataka (2009-02-27). "Synthesis of Thermoelectric Manganese Silicide by Mechanical Alloying and Pulse Discharge Sintering". Journal of Electronic Materials. Springer Science and Business Media LLC. 38 (7): 925–929. Bibcode:2009JEMat..38..925I. doi:10.1007/s11664-009-0697-3. ISSN   0361-5235. S2CID   135674442.
  19. Mahan, John E. (2004). "The potential of higher manganese silicide as an optoelectronic thin film material". Thin Solid Films. Elsevier BV. 461 (1): 152–159. Bibcode:2004TSF...461..152M. doi:10.1016/j.tsf.2004.02.090. ISSN   0040-6090.
  20. Solomkin, F. Yu.; Zaitsev, V. K.; Kartenko, N. F.; Kolosova, A. S.; Samunin, A. Yu.; Isachenko, G. N. (2008). "Crystallization of highest manganese silicide MnSi1.71–1.75 from tin-lead solution-melt". Technical Physics. Pleiades Publishing Ltd. 53 (12): 1636–1637. Bibcode:2008JTePh..53.1636S. doi:10.1134/s1063784208120190. ISSN   1063-7842. S2CID   120204099.
  21. Wetzig, Klaus; Schneider, Claus Michael (eds.). Metal based thin films for electronics. [ permanent dead link ] Wiley-VCH, 2006 (2nd edition), p. 64. ISBN   3-527-40650-6
  22. A silicon/iron-disilicide light-emitting diode operating at a wavelength of 1.5 μm. D. Leong, M. Harry, K. J. Reeson and K. P. Homewood. Nature 387, 686-688, 12 June 1997.
  23. Rizzi, A.; Rösen, B. N. E.; Freundt, D.; Dieker, Ch.; Lüth, H.; Gerthsen, D. (1995-06-15). "Heteroepitaxy of β-FeSi2on Si by gas-source MBE". Physical Review B. American Physical Society (APS). 51 (24): 17780–17794. Bibcode:1995PhRvB..5117780R. doi:10.1103/physrevb.51.17780. ISSN   0163-1829. PMID   9978811.
  24. Mahan, John E.; Thanh, V. Le; Chevrier, J.; Berbezier, I.; Derrien, J.; Long, Robert G. (1993). "Surface electron‐diffraction patterns of β‐FeSi2 films epitaxially grown on silicon". Journal of Applied Physics. AIP Publishing. 74 (3): 1747–1761. Bibcode:1993JAP....74.1747M. doi:10.1063/1.354804. hdl: 10217/67931 . ISSN   0021-8979.
  25. 1 2 3 4 5 6 7 8 9 10 11 12 13 Schlesinger, Mark E. (1990-06-01). "Thermodynamics of solid transition-metal silicides". Chemical Reviews. American Chemical Society (ACS). 90 (4): 607–628. doi:10.1021/cr00102a003. ISSN   0009-2665.
  26. Kotroczo, V.; McColm, I.J. (1994). "Phases in rapidly cooled scandium-silicon samples". Journal of Alloys and Compounds. Elsevier BV. 203: 259–265. doi:10.1016/0925-8388(94)90744-7. ISSN   0925-8388.
  27. Okamoto, H. (1995). "Comment on Sc-Si (Scandium-Silicon)". Journal of Phase Equilibria. Springer Science and Business Media LLC. 16 (5): 477. doi:10.1007/bf02645365. ISSN   1054-9714. S2CID   94990578.
  28. Okamoto, H. (1992). "Sc-Si (Scandium-Silicon)". Journal of Phase Equilibria. Springer Science and Business Media LLC. 13 (6): 679–681. doi:10.1007/bf02667229. ISSN   1054-9714. S2CID   93869056.
  29. Smith, J. F. (1985). "The Si−V (Silicon-Vanadium) system: Addendum". Bulletin of Alloy Phase Diagrams. Springer Science and Business Media LLC. 6 (3): 266–271. doi:10.1007/bf02880413. ISSN   0197-0216.
  30. Gokhale, A. B.; Abbaschian, G. J. (1987). "The Cr−Si (Chromium-Silicon) system". Journal of Phase Equilibria. Springer Science and Business Media LLC. 8 (5): 474–484. doi:10.1007/bf02893156. ISSN   1054-9714. S2CID   95591626.
  31. Pauling, L.; Soldate, A. M. (1948-09-01). "The nature of the bonds in the iron silicide, FeSi, and related crystals". Acta Crystallographica. International Union of Crystallography (IUCr). 1 (4): 212–216. Bibcode:1948AcCry...1..212P. doi:10.1107/s0365110x48000570. ISSN   0365-110X.
  32. Vočadlo, Lidunka; Price, Geoffrey D.; Wood, I. G. (1999-08-01). "Crystal structure, compressibility and possible phase transitions in epsilon-FeSi studied by first-principles pseudopotential calculations". Acta Crystallographica Section B: Structural Science. International Union of Crystallography (IUCr). 55 (4): 484–493. doi:10.1107/s0108768199001214. ISSN   0108-7681. PMID   10927390.
  33. Walter, Dirk; Karyasa, I W. (2005). "Synthesis and Characterization of Cobalt Monosilicide (CoSi) with CsCl Structure Stabilized by a β-SiC Matrix". Zeitschrift für anorganische und allgemeine Chemie (in German). Wiley. 631 (6–7): 1285–1288. doi: 10.1002/zaac.200500050 . ISSN   0044-2313.
  34. Ishida, K; Nishizawa, T; Schlesinger, M. E (1991). "The Co-Si (Cobalt-Silicon) system". Journal of Phase Equilibria. Springer Science and Business Media LLC. 12 (5): 578–586. doi:10.1007/bf02645074. ISSN   1054-9714. S2CID   94983677.
  35. Nash, P.; Nash, A. (1987). "The Ni−Si (Nickel-Silicon) system". Bulletin of Alloy Phase Diagrams. Springer Science and Business Media LLC. 8 (1): 6–14. doi:10.1007/bf02868885. ISSN   0197-0216.
  36. Okamoto, H. (2002). "Cu-Si (copper-silicon)". Journal of Phase Equilibria. Springer Science and Business Media LLC. 23 (3): 281–282. doi:10.1361/105497102770331857. ISSN   1054-9714. S2CID   98185051.
  37. Olesinski, R. W.; Abbaschian, G. J. (1985). "The Si-Zn (Silicon-Zinc) system". Bulletin of Alloy Phase Diagrams. Springer Science and Business Media LLC. 6 (6): 545–548. doi:10.1007/bf02887156. ISSN   0197-0216.
  38. Gokhale, A. B.; Abbaschian, G. J. (1986). "The Si−Y (Silicon-Yttrium) system". Bulletin of Alloy Phase Diagrams. Springer Science and Business Media LLC. 7 (5): 485–489. doi:10.1007/bf02867814. ISSN   0197-0216.
  39. Pöttgen, Rainer; Hoffmann, Rolf-Dieter; Kußmann, Dirk (1998). "The Binary Silicides Eu5Si3 and Yb3Si5 - Synthesis, Crystal Structure, and Chemical Bonding". Zeitschrift für anorganische und allgemeine Chemie (in German). Wiley. 624 (6): 945–951. doi:10.1002/(sici)1521-3749(199806)624:6<945::aid-zaac945>3.0.co;2-d. ISSN   0044-2313.
  40. Kubata, Christof; Krumeich, Frank; Wörle, Michael; Nesper, Reinhard (2005). "The Real Structure of YbSi1.4 - Commensurately and Incommensurately Modulated Silicon Substructures". Zeitschrift für anorganische und allgemeine Chemie (in German). Wiley. 631 (2–3): 546–555. doi:10.1002/zaac.200400423. ISSN   0044-2313.
  41. Okamoto, H. (1990). "The Si-Zr (Silicon-Zirconium) system". Journal of Phase Equilibria. Springer Science and Business Media LLC. 11 (5): 513–519. doi:10.1007/bf02898272. ISSN   1054-9714.
  42. Grin, Juri N. (1986). "Ein Aufbaumodell für "Chimney-Ladder"-Strukturen". Monatshefte für Chemie Chemical Monthly (in German). Springer Science and Business Media LLC. 117 (8–9): 921–932. doi:10.1007/bf00811261. ISSN   0026-9247. S2CID   94740968.
  43. Perring, L.; Bussy, F.; Gachon, J.C.; Feschotte, P. (1999). "The Ruthenium–Silicon system". Journal of Alloys and Compounds. Elsevier BV. 284 (1–2): 198–205. doi:10.1016/s0925-8388(98)00911-6. ISSN   0925-8388.
  44. Okamoto, H. (2000). "Ru-Si (Ruthenium-Silicon)". Journal of Phase Equilibria. Springer Science and Business Media LLC. 21 (5): 498. doi:10.1361/105497100770339806. ISSN   1054-9714.
  45. Geller, S.; Wood, E. A. (1954-05-20). "The crystal structure of rhodium silicide, RhSi". Acta Crystallographica. International Union of Crystallography (IUCr). 7 (5): 441–443. Bibcode:1954AcCry...7..441G. doi:10.1107/s0365110x54001314. ISSN   0365-110X.
  46. Schlesinger, M.E (1992). "The rh-si (rhodium-silicon) system". Journal of Phase Equilibria. Springer Science and Business Media LLC. 13 (1): 54–59. doi:10.1007/bf02645377. ISSN   1054-9714. S2CID   96736788.
  47. Baxi, H. C.; Massalski, T. B. (1991). "The pdsi (palladiumsilicon) system". Journal of Phase Equilibria. Springer Science and Business Media LLC. 12 (3): 349–356. doi:10.1007/bf02649925. ISSN   1054-9714. S2CID   100418050.
  48. Olesinski, R. W.; Gokhale, A. B.; Abbaschian, G. J. (1989). "The Ag-Si (Silver-Silicon) system". Bulletin of Alloy Phase Diagrams. Springer Science and Business Media LLC. 10 (6): 635–640. doi:10.1007/bf02877631. ISSN   0197-0216.
  49. Olesinski, R. W.; Abbaschian, G. J. (1985). "The Cd-Si (Cadmium-Silicon) system". Bulletin of Alloy Phase Diagrams. Springer Science and Business Media LLC. 6 (6): 534–536. doi:10.1007/bf02887152. ISSN   0197-0216.
  50. Okamoto, H. (2007-10-10). "La-Si (Lanthanum-Silicon)". Journal of Phase Equilibria and Diffusion. Springer Science and Business Media LLC. 28 (6): 585. doi:10.1007/s11669-007-9204-9. ISSN   1547-7037. S2CID   98826249.
  51. Bulanova, M.V.; Zheltov, P.N.; Meleshevich, K.A.; Saltykov, P.A.; Effenberg, G. (2002). "Cerium–silicon system". Journal of Alloys and Compounds. Elsevier BV. 345 (1–2): 110–115. doi:10.1016/s0925-8388(02)00409-7. ISSN   0925-8388.
  52. Munitz, A.; Gokhale, A. B.; Abbaschian, G. J. (1989). "The Ce-Si (Cerium-Silicon) system". Bulletin of Alloy Phase Diagrams. Springer Science and Business Media LLC. 10 (1): 73–78. doi:10.1007/bf02882179. ISSN   0197-0216.
  53. Gorbachuk, N. P.; Bolgar, A. S.; Blinder, A. V. (1997). "Thermodynamic properties of praseodymium silicides in the temperature range 298.15-2257 K". Powder Metallurgy and Metal Ceramics. Springer Science and Business Media LLC. 36 (9–10): 498–501. doi:10.1007/bf02680501. ISSN   1068-1302. S2CID   94765578.
  54. Gokhale, A. B.; Munitz, A.; Abbaschian, G. J. (1989). "The Nd-Si (Neodymium-Silicon) system". Bulletin of Alloy Phase Diagrams. Springer Science and Business Media LLC. 10 (3): 246–251. doi:10.1007/bf02877504. ISSN   0197-0216.
  55. Gokhale, A. B.; Abbaschian, G. J. (1988). "The Si-Sm (Silicon-Samarium) system". Bulletin of Alloy Phase Diagrams. Springer Science and Business Media LLC. 9 (5): 582–585. doi:10.1007/bf02881960. ISSN   0197-0216.
  56. Gokhale, A. B.; Abbaschian, G. J. (1988). "The Gd−Si (Gadolinium-Silicon) system". Bulletin of Alloy Phase Diagrams. Springer Science and Business Media LLC. 9 (5): 574–578. doi:10.1007/bf02881958. ISSN   0197-0216.
  57. Okamoto, H. (2000). "Si-Tb (Silicon-Terbium)". Journal of Phase Equilibria. Springer Science and Business Media LLC. 21 (5): 500. doi:10.1361/105497100770339824. ISSN   1054-9714.
  58. Gorbachuk, Nikolai P.; Bolgar, Alexander S. (2002). "The Enthalpies of DySi2 and HoSi1.67 at 298.15-2007 K". Powder Metallurgy and Metal Ceramics. Springer Science and Business Media LLC. 41 (3/4): 173–176. doi:10.1023/a:1019891128273. ISSN   1068-1302. S2CID   91215617.
  59. Okamoto, H. (1996). "Ho-Si (holmium-silicon)". Journal of Phase Equilibria. Springer Science and Business Media LLC. 17 (4): 370–371. doi:10.1007/bf02665570. ISSN   1054-9714. S2CID   93224227.
  60. Okamoto, H. (1997). "Er-Si (erbium-silicon)". Journal of Phase Equilibria. Springer Science and Business Media LLC. 18 (4): 403. doi:10.1007/s11669-997-0073-z. ISSN   1054-9714.
  61. Okamoto, H. (2003). "Si-Yb (Silicon-Ytterbium)". Journal of Phase Equilibria. Springer Science and Business Media LLC. 24 (6): 583. doi: 10.1361/105497103772084787 . ISSN   1054-9714. S2CID   196735476.
  62. Topor, L.; Kleppa, O.J. (1990). "Standard enthalpies of formation of Me5Si3 (Me - Y, Lu, Zr) and of Hf3Si2". Journal of the Less Common Metals. Elsevier BV. 167 (1): 91–99. doi:10.1016/0022-5088(90)90292-r. ISSN   0022-5088.
  63. Gokhale, A. B.; Abbaschian, G. J. (1989). "The Hf-Si (hafnium-silicon) system". Bulletin of Alloy Phase Diagrams. Springer Science and Business Media LLC. 10 (4): 390–393. doi:10.1007/bf02877595. ISSN   0197-0216.
  64. Tungsten: Properties, Chemistry, Technology of the Element, Alloys, and Chemical Compounds Lassner, Erik, Schubert, Wolf-Dieter 1999
  65. Gokhale, A. B.; Abbaschian, R. (1996). "The Re-Si system (rhenium-silicon)". Journal of Phase Equilibria. Springer Science and Business Media LLC. 17 (5): 451–454. doi:10.1007/bf02667640. ISSN   1054-9714. S2CID   95014982.
  66. Okamoto, H. (2007-06-07). "Os-Si (Osmium-Silicon)". Journal of Phase Equilibria and Diffusion. Springer Science and Business Media LLC. 28 (4): 410. doi:10.1007/s11669-007-9121-y. ISSN   1547-7037. S2CID   95791114.
  67. Allevato, C.E.; Vining, Cronin B. (1993). "Phase diagram and electrical behavior of silicon-rich iridium silicide compounds". Journal of Alloys and Compounds. Elsevier BV. 200 (1–2): 99–105. doi:10.1016/0925-8388(93)90478-6. ISSN   0925-8388.
  68. Jeitschko, W.; Parthé, E. (1967-03-10). "The crystal structure of Rh17Ga22, an example of a new kind of electron compound". Acta Crystallographica. International Union of Crystallography (IUCr). 22 (3): 417–430. Bibcode:1967AcCry..22..417J. doi:10.1107/s0365110x67000799. ISSN   0365-110X.
  69. Okamoto, H. (1995). "Pt-Si (Platinum-Silicon)". Journal of Phase Equilibria. Springer Science and Business Media LLC. 16 (3): 286–287. doi:10.1007/bf02667320. ISSN   1054-9714. S2CID   198916454.
  70. Okamoto, H.; Massalski, T. B. (1983). "The Au−Si (Gold-Silicon) system". Bulletin of Alloy Phase Diagrams. Springer Science and Business Media LLC. 4 (2): 190–198. doi:10.1007/bf02884878. ISSN   0197-0216.
  71. Guminski, C. (2001). "The Hg-Si system (mercury-silicon)". Journal of Phase Equilibria. Springer Science and Business Media LLC. 22 (6): 682–683. doi:10.1007/s11669-001-0041-y. ISSN   1054-9714.
  72. as summarized in Constitution of Binary Alloys, Second Supplement, Francis A. Shunk, McGraw-Hill Book Inc., (NY NY 1969) p. 681-82.
  73. http://www.rertr.anl.gov/Web1999/PDF/18suripto.pdf [ bare URL PDF ]
  74. Boulet, Pascal; Bouëxière, Daniel; Rebizant, Jean; Wastin, Franck (2003). "Structural chemistry of the neptunium–silicon binary system". Journal of Alloys and Compounds. Elsevier BV. 349 (1–2): 172–179. doi:10.1016/s0925-8388(02)00918-0. ISSN   0925-8388.
  75. Land, C.C.; Johnson, K.A.; Ellinger, F.H. (1965). "The plutonium-silicon system". Journal of Nuclear Materials. Elsevier BV. 15 (1): 23–32. Bibcode:1965JNuM...15...23L. doi:10.1016/0022-3115(65)90105-4. ISSN   0022-3115.
  76. Weigel, F.; Wittmann, F.D.; Marquart, R. (1977). "Americium monosilicide and "disilicide"". Journal of the Less Common Metals. Elsevier BV. 56 (1): 47–53. doi:10.1016/0022-5088(77)90217-x. ISSN   0022-5088.
  77. Weigel, F.; Marquart, R. (1983). "Preparation and properties of some curium silicides". Journal of the Less Common Metals. Elsevier BV. 90 (2): 283–290. doi:10.1016/0022-5088(83)90077-2. ISSN   0022-5088.
  78. Olesinski, R. W.; Abbaschian, G. J. (1984). "The B−Si (Boron-Silicon) system". Bulletin of Alloy Phase Diagrams. Springer Science and Business Media LLC. 5 (5): 478–484. doi:10.1007/bf02872900. ISSN   0197-0216.
  79. Murray, J. L.; McAlister, A. J. (1984). "The Al-Si (Aluminum-Silicon) system". Bulletin of Alloy Phase Diagrams. Springer Science and Business Media LLC. 5 (1): 74–84. doi:10.1007/bf02868729. ISSN   0197-0216.
  80. Olesinski, R. W.; Kanani, N.; Abbaschian, G. J. (1985). "The Ga−Si (Gallium-Silicon) system". Bulletin of Alloy Phase Diagrams. Springer Science and Business Media LLC. 6 (4): 362–364. doi:10.1007/bf02880523. ISSN   0197-0216.
  81. Olesinski, R. W.; Kanani, N.; Abbaschian, G. J. (1985). "The In−Si (Indium-Silicon) system". Bulletin of Alloy Phase Diagrams. Springer Science and Business Media LLC. 6 (2): 128–130. doi:10.1007/bf02869223. ISSN   0197-0216.
  82. Olesinski, R. W.; Abbaschian, G. J. (1985). "The Si-Zn (Silicon-Thallium) system". Bulletin of Alloy Phase Diagrams. Springer Science and Business Media LLC. 6 (6): 543–544. doi:10.1007/bf02887155. ISSN   0197-0216.
  83. Olesinski, R. W.; Abbaschian, G. J. (1984). "The Ge−Si (Germanium-Silicon) system". Bulletin of Alloy Phase Diagrams. Springer Science and Business Media LLC. 5 (2): 180–183. doi:10.1007/bf02868957. ISSN   0197-0216.
  84. Olesinski, R. W.; Abbaschian, G. J. (1984). "The Si−Sn (Silicon−Tin) system". Bulletin of Alloy Phase Diagrams. Springer Science and Business Media LLC. 5 (3): 273–276. doi:10.1007/bf02868552. ISSN   0197-0216.
  85. Olesinski, R. W.; Abbaschian, G. J. (1984). "The Pb−Si (Lead−Silicon) system". Bulletin of Alloy Phase Diagrams. Springer Science and Business Media LLC. 5 (3): 271–273. doi:10.1007/bf02868551. ISSN   0197-0216.
  86. Carlson, O. N. (1990). "The N-Si (Nitrogen-Silicon) system". Bulletin of Alloy Phase Diagrams. Springer Science and Business Media LLC. 11 (6): 569–573. doi:10.1007/bf02841719. ISSN   0197-0216.
  87. Maier, Günther; Reisenauer, Hans Peter; Glatthaar, Jörg (2000-10-21). "Reactions of Silicon Atoms with Nitrogen: A Combined Matrix Spectroscopic and Density Functional Theory Study1". Organometallics. American Chemical Society (ACS). 19 (23): 4775–4783. doi:10.1021/om000234r. ISSN   0276-7333.
  88. Olesinski, R. W.; Kanani, N.; Abbaschian, G. J. (1985). "The P−Si (Phosphorus-Silicon) system". Bulletin of Alloy Phase Diagrams. Springer Science and Business Media LLC. 6 (2): 130–133. doi:10.1007/bf02869224. ISSN   0197-0216.
  89. Carlsson, J. R. A.; Madsen, L. D.; Johansson, M. P.; Hultman, L.; Li, X.-H.; Hentzell, H. T. G.; Wallenberg, L. R. (1997). "A new silicon phosphide, Si12P5: Formation conditions, structure, and properties". Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films. American Vacuum Society. 15 (2): 394–401. Bibcode:1997JVSTA..15..394C. doi:10.1116/1.580497. ISSN   0734-2101.
  90. Huang, M.; Feng, Y.P. (2004). "Further study on structural and electronic properties of silicon phosphide compounds with 3:4 stoichiometry". Computational Materials Science. Elsevier BV. 30 (3–4): 371–375. doi:10.1016/j.commatsci.2004.02.031. ISSN   0927-0256.
  91. Olesinski, R. W.; Abbaschian, G. J. (1985). "The As−Si (Arsenic-Silicon) system". Bulletin of Alloy Phase Diagrams. Springer Science and Business Media LLC. 6 (3): 254–258. doi:10.1007/bf02880410. ISSN   0197-0216.
  92. Olesinski, R. W.; Abbaschian, G. J. (1985). "The Sb-Si (Antimony-Silicon) system". Bulletin of Alloy Phase Diagrams. Springer Science and Business Media LLC. 6 (5): 445–448. doi:10.1007/bf02869508. ISSN   0197-0216.
  93. Olesinski, R. W.; Abbaschian, G. J. (1985). "The Bi−Si (Bismuth-Silicon) system". Bulletin of Alloy Phase Diagrams. Springer Science and Business Media LLC. 6 (4): 359–361. doi:10.1007/bf02880522. ISSN   0197-0216.
  94. Wrledt, H. A. (1990). "The O-Si (Oxygen-Silicon) system". Bulletin of Alloy Phase Diagrams. Springer Science and Business Media LLC. 11 (1): 43–61. doi:10.1007/bf02841583. ISSN   0197-0216.
  95. Mück, Leonie Anna; Lattanzi, Valerio; Thorwirth, Sven; McCarthy, Michael C.; Gauss, Jürgen (2012-02-28). "Cyclic SiS2: A New Perspective on the Walsh Rules". Angewandte Chemie International Edition. Wiley. 51 (15): 3695–3698. doi:10.1002/anie.201108982. ISSN   1433-7851. PMID   22374622.
  96. Okamoto, H. (2000). "Se-Si (Selenium-Silicon)". Journal of Phase Equilibria. Springer Science and Business Media LLC. 21 (5): 499. doi:10.1361/105497100770339815. ISSN   1054-9714.
  97. Davey, T. G.; Baker, E. H. (1980). "A note on the Si-Te phase diagram". Journal of Materials Science. Springer Science and Business Media LLC. 15 (6): 1601–1602. Bibcode:1980JMatS..15.1601D. doi:10.1007/bf00752149. ISSN   0022-2461. S2CID   135533614.
  98. Inorganic chemistry, Egon Wiberg, Nils Wiberg, Arnold Frederick Holleman 2001