Bluefield Formation

Last updated
Bluefield Formation
Stratigraphic range: Late Visean?-Early Serpukhovian
~323.5–326.5  Ma
O
S
D
C
P
T
J
K
Pg
N
Bluefield Formation outcrop.jpg
Outcrop near Glen Lyn, Virginia
Type Formation
Unit of Mauch Chunk Group
Sub-unitsConey Member, Clayton Member,Graham Member, Bertha Member, Bradshaw Member, Indian Mills Member, Raines Corner Member, Possumtrot Shale, Droop Sandstone, Talcott Shale, Ada Shale, Reynolds Limestone, Bickett Shale, Webster Springs Sandstone, Glenray Limestone, Lillydale Shale
Underlies Hinton Formation
Overlies Greenbrier Group
Lithology
Primary Mudstone, limestone, sandstone
Other Conglomerate, coal
Location
Region Appalachia and Southeastern United States
Country United States
Extent Virginia, West Virginia, Pennsylvania?, Maryland?, Kentucky?
Type section
Named for Bluefield, West Virginia
Named byCampbell, 1896

The Bluefield Formation is a geologic formation in West Virginia. It preserves fossils dating back to the Mississippian subperiod of the Carboniferous period. Sediments of this age formed along a large marine basin lying in the region of what is now the Appalachian Plateau. The Bluefield Formation is the lowest section of the primarily siliciclastic Mauch Chunk Group, underlying the Stony Gap Sandstone Member of the Hinton Formation and overlying the limestone-rich Greenbrier Group. [1] [2] [3]

Contents

History

As with many other units in southeast West Virginia, the Bluefield Formation was first named by Campbell (1896). At the time it was called the "Bluefield Shale". [4] Reger & Price (1926) later renamed it to the Bluefield Group and supplied an extensive list of subunits. [5] Subsequent publications further altered the name to Bluefield Formation while also naming the encompassing Mississippian sequence as the Mauch Chunk Group. [6] [2] As originally designated, the Bluefield Formation pertained to an area in southeast West Virginia encompassed by Mercer, Monroe, and Summers counties, as well as a few exposures in Virginia adjacent to those counties. [5] [2]

Further north in West Virginia, Mauch Chunk strata becomes thinner. Some geologists refrain from subdividing the Mauch Chunk Group north of Randolph County, and rename it to the Mauch Chunk Formation in northern exposures. [2] However, others retain separate formations in the northern exposures, including the Bluefield Formation. [7] [8] [9] Since the Mauch Chunk Group extends into parts of Maryland and Pennsylvania, the Bluefield Formation (or equivalent strata) may be identified in those areas as well. Equivalent strata is also found in southwest Virginia and southeast Kentucky as the upper part of the Newman Limestone. [3]

Geology

Sequences and cycles

Stratigraphic position of the Bluefield Formation in the Mauch Chunk Group Bluefieldius Fig-1-full.png
Stratigraphic position of the Bluefield Formation in the Mauch Chunk Group

The Bluefield Formation can be subdivided into four lithological units or "packages" at its thickest extent. The oldest two packages are primarily grey shale and fossiliferous limestone, while the younger two packages are primarily siltstone, sandstone, and red mudstone. Four distinct types of sediment deposition and flooding cycles are preserved, labelled types A-D. Type A and B cycles are most common in the younger packages and type C and D cycles are most common in the older packages. These cycles and sequences of the Bluefield Formation are most well preserved at the depocenter of the Bluefield Formation, at the eastern edge of Mercer County, West Virginia. Here, at least 28 cycles have been tracked. Elsewhere they may be incomplete due to erosion within the basin as it was experiencing deposition. [1]

Type A cycles involve fine black shale grading upwards to brown laminated mudstone, then thickly-bedded red mudstone and mud-cracked siltstone layers, before a flood event returns the area to carbonate-rich mudstone. Ostracods, root casts, and intense bioturbation were common in many layers. Coal fragments are found in the basal black shale layers. Carbonate nodules and slickensides were present in red mudstone, indicating that they were vertisols. Type A cycles represent brackish lagoons which were able to dry out into mudflats in a hot, semi-arid climate. The mudflats accumulated soil, as well as streams that formed silty crevasse splay deposits. [1]

Type B cycles were similar to type A cycles but were thicker and differed in other ways. The basal black shale is richer in coal and grades into siltier brown mudstone and then interbedded layers of siltstone, sandstone, and silty mudstone. The top of a cycle is characterized by a thick layer of rippling cross-bedded sandstone filled with root casts. Type B cycles represent a delta influenced by tides which alternate the supply of fine and coarse sediments. However, bioturbation makes it difficult to precisely track tidal forces. The top of a cycle preserves a sandbar in the process of being colonized by plants. Once seawater re-submerges the area and starts a new cycle, plants contribute to the richness of coal within the basal shale. [1]

Type C cycles begin with bioturbated mudstone which abruptly transitions into a thick sequence of limestone. The limestone can be characterized as thin layers of fossil-rich grainstone interbedding with broader layers of packstone. Rarely, brown laminated mudstone may be present above the limestone. The upper part of the cycle involves conglomerate covered by sandstone and siltstone filled with plant fragments, ripple marks, and occasionally tetrapod footprints. In type C cycles, a transgression floods a mudflat and allows it to be colonized by marine organisms. Repeated storm event lead to alternating limestone grain size, and eventually tidally-influenced sandbars manifest as the shoreline shifts back. [1]

Type D cycles primarily involve a thick sequence of laminated mudstone grading from shale to siltstone. The sequence is occasionally interrupted by fossil-rich packstone which grades upwards into mudstone. The thickest packstone layer is often located at the top of the sequence, though dolomite-rich mudstone may lie in its place. Type D cycles are entirely marine deposits found on the continental shelf of the ancient marine basin. Though this is a mostly stable environment, it is regularly disrupted by storms (forming siltstone) and turbidity flows (forming packstone). The gradual increase in sediment size is tied to a regressing coastline, allowing shallow-water sediments to influence the environment more. [1]

Collectively, the cycles and "packages" of the Bluefield Formation represent a series of large-scale sea level changes, each lasting several hundred thousand years. This data is consistent with identifying each package as a fourth-order sequence. This likely means that they are tied to glacial periods as the earth was transitioning from a greenhouse to icehouse climate. The individual sediment cycles represent smaller-scale (50-100 thousand year) glacial sea level fluctuations, also known fifth-order sequences or parasequences. The upper two packages of the Bluefield Formation have more parasequences and more coal near the depocenter, but areas further away (towards the basin margin) had fewer parasequences and less coal. This indicates that the basin margins had less subsidence compared to the depocenter. The relatively larger impact of sea level changes leads to more erosion along the basin margin, allowing many parasequences and coal beds to be eroded away completely. [1]

Paleobiota

Greererpeton, a colosteid from strata in Greer, West Virginia equivalent to the Bickett Shale member of the Bluefield Formation Greererpeton DB2.jpg
Greererpeton , a colosteid from strata in Greer, West Virginia equivalent to the Bickett Shale member of the Bluefield Formation
Bluefieldius, a fish found in delta sediments near the depocenter of the Bluefield Formation in Mercer County, West Virginia Bluefieldius fig-3-full-b.png
Bluefieldius , a fish found in delta sediments near the depocenter of the Bluefield Formation in Mercer County, West Virginia

Fossils are common in limestone and shale layers of the Bluefield Formation. In the region of southeast West Virginia (and neighboring parts of Virginia) for which the Bluefield Formation was named, invertebrates are by far the most common fossils. These include a diverse assortment of bryozoans, brachiopods, bivalves, gastropods, corals, trilobites, ostracods, crinoids, and blastoids. [5] [3] Only one site in southeast West Virginia has produced vertebrate material. This site is a highway roadcut located across the state line from Glen Lyn, Virginia. It preserves a tidal deltaic sequence near the middle of the Bluefield Formation. Tetrapod trackways from this site have been given the species name Hylopus hamesi , and were likely made by Proterogyrinus or a closely related animal. [10] The site has also produced a single complete skeleton of a basal actinopterygiian fish, the holotype of Bluefieldius mercerensis . [11]

The tentatively assigned northern exposures of the Bluefield Formation are also fossiliferous, preserving the same types of invertebrates as the southern exposures. [2] [12] Bivalves are particularly well-studied in the northern exposures. [8] Among the most famous northern Mauch Chunk site is the Greer limestone quarry in Monongalia County, West Virginia. Exposures at this site have been equated with sediment units from the lower half of the Bluefield Formation, from the Lillydale Shale up to the Droop Sandstone. [7] Apart from numerous invertebrates, a prominent vertebrate fauna is also known from the Bickett Shale of the Bluefield Formation at Greer. Preserved vertebrate fossils include acanthodians, lungfish, rhizodonts, and articulated tetrapod remains. [9] [13] Several new tetrapod genera have been named from Greer: Greererpeton (a colosteid), [14] Proterogyrinus (a basal embolomere), [15] and Mauchchunkia (a synonym of Proterogyrinus). [9] [16]

See also

Related Research Articles

<span class="mw-page-title-main">Geology of the Capitol Reef area</span>

The exposed geology of the Capitol Reef area presents a record of mostly Mesozoic-aged sedimentation in an area of North America in and around Capitol Reef National Park, on the Colorado Plateau in southeastern Utah.

The geology of Shropshire is very diverse with a large number of periods being represented at outcrop. The bedrock consists principally of sedimentary rocks of Palaeozoic and Mesozoic age, surrounding restricted areas of Precambrian metasedimentary and metavolcanic rocks. The county hosts in its Quaternary deposits and landforms, a significant record of recent glaciation. The exploitation of the Coal Measures and other Carboniferous age strata in the Ironbridge area made it one of the birthplaces of the Industrial Revolution. There is also a large amount of mineral wealth in the county, including lead and baryte. Quarrying is still active, with limestone for cement manufacture and concrete aggregate, sandstone, greywacke and dolerite for road aggregate, and sand and gravel for aggregate and drainage filters. Groundwater is an equally important economic resource.

<span class="mw-page-title-main">Ecca Group</span> Second of the main subdivisions of the Karoo Supergroup of geological strata in southern Africa

The Ecca Group is the second of the main subdivisions of the Karoo Supergroup of geological strata in southern Africa. It mainly follows conformably after the Dwyka Group in some sections, but in some localities overlying unconformably over much older basement rocks. It underlies the Beaufort Group in all known outcrops and exposures. Based on stratigraphic position, lithostratigraphic correlation, palynological analyses, and other means of geological dating, the Ecca Group ranges between Early to earliest Middle Permian in age.

<span class="mw-page-title-main">San Juan Basin</span> Structural basin in the Southwestern United States

The San Juan Basin is a geologic structural basin located near the Four Corners region of the Southwestern United States. The basin covers 7,500 square miles and resides in northwestern New Mexico, southwestern Colorado, and parts of Utah and Arizona. Specifically, the basin occupies space in the San Juan, Rio Arriba, Sandoval, and McKinley counties in New Mexico, and La Plata and Archuleta counties in Colorado. The basin extends roughly 100 miles (160 km) N-S and 90 miles (140 km) E-W.

The Mississippian Mauch Chunk Formation is a mapped bedrock unit in Pennsylvania, Maryland, and West Virginia. It is named for the township of Mauch Chunk, now known as borough of Jim Thorpe, Pennsylvania and for nearby Mauch Chunk Ridge where the formation crops out.

<span class="mw-page-title-main">Bedford Shale</span> Geological formation in the United States

The Bedford Shale is a shale geologic formation in the states of Ohio, Michigan, Pennsylvania, Kentucky, West Virginia, and Virginia in the United States.

The Triassic Lockatong Formation is a mapped bedrock unit in Pennsylvania, New Jersey, and New York. It is named after the Lockatong Creek in Hunterdon County, New Jersey.

<span class="mw-page-title-main">Tambach Formation</span>

The Tambach Formation is an Early Permian-age geologic formation in central Germany. It consists of red to brown-colored sedimentary rocks such as conglomerate, sandstone, and mudstone, and is the oldest portion of the Upper Rotliegend within the Thuringian Forest Basin.

<span class="mw-page-title-main">Surprise Canyon Formation</span> Landform in the Grand Canyon, Arizona

The Surprise Canyon Formation is a geologic formation that consists of clastic and calcareous sedimentary rocks that fill paleovalleys and paleokarst of Late Mississippian (Serpukhovian) age in Grand Canyon. These strata outcrop as isolated, lens-shaped exposures of rocks that fill erosional valleys and locally karsted topography and caves developed in the top of the Redwall Limestone. The Surprise Canyon Formation and associated unconformities represent a significant period of geologic time between the deposition of the Redwall Limestone and the overlying Supai Group.

<span class="mw-page-title-main">Supai Group</span> Section of red bed deposits at the Colorado Plateau

The Supai Group is a slope-forming section of red bed deposits found in the Colorado Plateau. The group was laid down during the Pennsylvanian to Lower Permian. Cliff-forming interbeds of sandstone are noticeable throughout the group. The Supai Group is especially exposed throughout the Grand Canyon in northwest Arizona, as well as local regions of southwest Utah, such as the Virgin River valley region. It occurs in Arizona at Chino Point, Sycamore Canyon, and famously at Sedona as parts of Oak Creek Canyon. In the Sedona region, it is overlain by the Hermit Formation, and the colorful Schnebly Hill Formation.

The geology of Lancashire in northwest England consists in the main of Carboniferous age rocks but with Triassic sandstones and mudstones at or near the surface of the lowlands bordering the Irish Sea though these are largely obscured by Quaternary deposits.

<span class="mw-page-title-main">Bluestone Formation</span>

The Bluestone Formation is a geologic formation in West Virginia. It is the youngest unit of the Upper Mississippian-age Mauch Chunk Group. A pronounced unconformity separates the upper boundary of the Bluestone Formation from sandstones of the overlying Pennsylvanian-age Pocahontas Formation.

The Great Scar Limestone Group is a lithostratigraphical term referring to a succession of generally fossiliferous rock strata which occur in the Pennines in northern England and in the Isle of Man within the Tournaisian and Visean stages of the Carboniferous Period.

The geology of Ohio formed beginning more than one billion years ago in the Proterozoic eon of the Precambrian. The igneous and metamorphic crystalline basement rock is poorly understood except through deep boreholes and does not outcrop at the surface. The basement rock is divided between the Grenville Province and Superior Province. When the Grenville Province crust collided with Proto-North America, it launched the Grenville orogeny, a major mountain building event. The Grenville mountains eroded, filling in rift basins and Ohio was flooded and periodically exposed as dry land throughout the Paleozoic. In addition to marine carbonates such as limestone and dolomite, large deposits of shale and sandstone formed as subsequent mountain building events such as the Taconic orogeny and Acadian orogeny led to additional sediment deposition. Ohio transitioned to dryland conditions in the Pennsylvanian, forming large coal swamps and the region has been dryland ever since. Until the Pleistocene glaciations erased these features, the landscape was cut with deep stream valleys, which scoured away hundreds of meters of rock leaving little trace of geologic history in the Mesozoic and Cenozoic.

<span class="mw-page-title-main">Bokkeveld Group</span> Devonian sedimentary rocks in South Africa

The Bokkeveld Group is the second of the three main subdivisions of the Cape Supergroup in South Africa. It overlies the Table Mountain Group and underlies the Witteberg Group. The Bokkeveld Group rocks are considered to range between Lower Devonian (Lochkovian) to Middle Devonian (Givetian) in age.

<span class="mw-page-title-main">Geology of Utah</span>

The geology of Utah, in the western United States, includes rocks formed at the edge of the proto-North American continent during the Precambrian. A shallow marine sedimentary environment covered the region for much of the Paleozoic and Mesozoic, followed by dryland conditions, volcanism, and the formation of the basin and range terrain in the Cenozoic.

The geology of Denmark includes 12 kilometers of unmetamorphosed sediments lying atop the Precambrian Fennoscandian Shield, the Norwegian-Scottish Caledonides and buried North German-Polish Caledonides. The stable Fennoscandian Shield formed from 1.45 billion years ago to 850 million years ago in the Proterozoic. The Fennoscandian Border Zone is a large fault, bounding the deep basement rock of the Danish Basin—a trough between the Border Zone and the Ringkobing-Fyn High. The Sorgenfrei-Tornquist Zone is a fault-bounded area displaying Cretaceous-Cenozoic inversion.

The geology of Yukon includes sections of ancient Precambrian Proterozoic rock from the western edge of the proto-North American continent Laurentia, with several different island arc terranes added through the Paleozoic, Mesozoic and Cenozoic, driving volcanism, pluton formation and sedimentation.

The Tyrone Group is a lithostratigraphical term coined to refer to a particular succession of rock strata which occur in Northern Ireland within the Visean Stage of the Carboniferous Period. It comprises a series of limestones, shales and sandstones which accumulated to a thickness of 2400m in the northwest Carboniferous basin of Ireland. The type areas for the group are the Clogher Valley of County Tyrone and the Fermanagh Highlands of nearby County Fermanagh. The rocks of the group sit unconformably on older rocks of the Shanmullagh Formation of the Fintona Group which are the local representatives of the Lower Old Red Sandstone. The top of the Dartry Limestone, the uppermost part of the group, is a disconformity, above which are the layered sandstones and shales of the Meenymore Formation of the Leitrim Group. The succession continues south and west across the border into the Republic of Ireland, though different names are typically applied.

This article describes the geology of Dartmoor National Park in Devon, in south-west England. Dartmoor gained national park status in 1951 but the designated area of 954 km2 (368 sq mi) extends beyond the upland of Dartmoor itself to include much of the surrounding land, particularly in the northeast. The geology of the national park consists of a 625 km2 (241 sq mi) core of granite intruded during the early Permian period into a sequence of sedimentary rocks originating in the Devonian and Carboniferous periods. These rocks were faulted and folded, sometimes, intensely, during the Variscan orogeny. Thermal metamorphism has also taken place around the margins of the granite pluton altering the character of the sedimentary rocks whilst mineral veins were emplaced within the granite. A small outlier of Palaeogene sediments occurs on the eastern boundary of the national park.

References

  1. 1 2 3 4 5 6 7 Maynard, J.P.; Eriksson, K.A.; Law, R.D. (15 November 2006). "The upper Mississippian Bluefield Formation in the Central Appalachian basin: A hierarchical sequence-stratigraphic record of a greenhouse to icehouse transition". Sedimentary Geology. 192 (1–2): 99–122. doi:10.1016/j.sedgeo.2006.03.027. hdl: 10919/40533 . ISSN   0037-0738.
  2. 1 2 3 4 5 Arkle, Jr., Thomas; et al. (1979). The Mississippian and Pennsylvanian (Carboniferous) Systems in the United States—West Virginia and Maryland (PDF) (Report). Geological Survey Professional Papers. pp. D1–D35. 1110-D.
  3. 1 2 3 Englund, Kenneth J. (1979). The Mississippian and Pennsylvanian (Carboniferous) Systems in the United States - Virginia (PDF) (Report). Geological Survey Professional Papers. pp. C1–C21. 1110-C.
  4. Campbell, M.R. (1896). "Pocahontas Folio (Virginia-West Virginia)". Geologic Atlas of the United States. Vol. 26. Department of the Interior, United States Geological Survey. pp. 414–419.
  5. 1 2 3 Reger, David B.; Price, Paul H. (1926). Mercer, Monroe, and Summers Counties. Wheeling: West Virginia Geological Survey. pp. 1–963.
  6. Englund, K.J. (1968). "Geologic map of the Bramwell quadrangle, West Virginia-Virginia". U.S. Geological Survey Geologic Quadrangle Map GQ-745.
  7. 1 2 Tilton, John L. (1928). "Geology from Morgantown to Cascade, West Virginia, along state route number 7". Proceedings of the West Virginia Academy of Science. 2: 65–86.
  8. 1 2 Busanus, J. W.; Hoare, R. D. (May 1991). "Bivalves (Mollusca) from the Mauch Chunk Group (Mississippian, Chesterian) of northern West Virginia and southwestern Pennsylvania". Journal of Paleontology. 65 (3): 465–480. doi:10.1017/S0022336000030419. ISSN   0022-3360. S2CID   130817512.
  9. 1 2 3 Hotton III, Nicholas (30 September 1970). "Mauchunkia bassa, gen. et sp. nov., an anthracosaur (Amphibia, Labyrinthodonta) from the Upper Mississippian". Kirtlandia. 12: 1–38.
  10. Sundberg, Frederick A.; Bennington, J. Bret; Wizevich, Michael C.; Bambach, Richard K. (1990-02-01). "Upper Carboniferous (Namurian) amphibian trackways from the Bluefield Formation, West Virginia, USA". Ichnos. 1 (2): 111–124. doi:10.1080/10420949009386340. ISSN   1042-0940.
  11. Mickle, Kathryn E. (2018-08-29). "A new lower actinopterygian fish from the Upper Mississippian Bluefield Formation of West Virginia, USA". PeerJ. 6: e5533. doi: 10.7717/peerj.5533 . ISSN   2167-8359. PMC   6119456 . PMID   30186696.
  12. Kammer, Thomas W.; Lake, Andrew M. (June 2001). "Salinity ranges of late Mississippian invertebrates of the central Appalachian Basin" (PDF). Southeastern Geology. 40 (2): 99–116.
  13. Elliott, D.K.; Taber, A.C. (1981). "Mississippian vertebrates from Greer, West Virginia". Proceedings of the West Virginia Academy of Science. 53: 73–80.
  14. Romer, Alfred S. (14 March 1969). "A temnospondylous labyrinthodont from the Lower Carboniferous". Kirtlandia. 6: 1–20.
  15. Romer, A.S. (30 April 1970). "A new anthracosaurian labyrinthodont, Proterogyrinus scheelei, from the Lower Carboniferous". Kirtlandia. 10: 1–16.
  16. Holmes, R. (2 November 1984). "The Carboniferous Amphibian Proterogyrinus scheelei Romer, and the Early Evolution of Tetrapods". Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 306 (1130): 431–524. doi:10.1098/rstb.1984.0103.