Bombardier ALP-45DP

Last updated
ALP-45DP
NJT-AMT ALP-45DP in Kassel Germany.jpg
ALP-45DP locomotives for NJT and Exo in Kassel, Germany
Type and origin
Power type Electro-diesel (dual mode)
Builder Bombardier Transportation
Alstom
Build date2010–2012 [1]
2019–Present
Total producedNJT: 60 [2] [3]
Exo: 20 [2]
Specifications
Configuration:
   AAR B-B
   UIC Bo′Bo′
Gauge 4 ft 8+12 in (1,435 mm) standard gauge
Bogies FLEXX Power 250
Wheel diameter1.118 to 1.046 m (44.0 to 41.2 in) new / worn
Minimum curve 91 m (298.56 ft)
Wheelbase bogie (truck) 2.800 m (9 ft 2.2 in)
bogie centres 13.250 m (43.47 ft)
Length21.8 m (72 ft) length over coupler faces
Width2.95 m (9 ft 8+18 in)
Height4.4 m (14 ft 5+14 in)
Axle load 32.65 t (32.13 long tons; 35.99 short tons) max
Loco weight288,000 lb (131,000 kg)
Fuel type Diesel
Fuel capacity1,600 US gal (6,100 L; 1,300 imp gal)*,
1,800 US gal (6,800 L; 1,500 imp gal)†
Electric system/s Exo: Overhead line,  25 kV 60 Hz AC
NJT: Overhead line;
Current pickup(s) pantograph
Prime mover 2x Caterpillar 3512C HD [4] [5]
RPM range600-1800
Engine type V12 diesel engine, 7.1 t (7.0 long tons; 7.8 short tons)
Aspiration Turbocharged
Displacement58.6 L (3,580 cu in) [6]
Alternator 2x MITRAC [7] TG 3800A, 1700 kVA [8]
Traction motors 4x MITRAC DR 3700F, 1,300 kW (1,700 hp) each [9] [note 1]
Head end power 1100 kVA, 1,000 kW (1,300 hp), 3 phase, 3 x 480 V AC 60 Hz [10] [11]
TransmissionAC-DC-AC
MU working Yes, up to 2 units. [12] [note 2]
Train heatingLocomotive supplied HEP
Loco brake Regenerative/Dynamic, WABCO Electro-pneumatic.
Mechanical: hollow shaft mounted disc brake, [9] plus tread brakes [14]
Train brakes Pneumatic
Couplers Tightlock coupler
Performance figures
Maximum speedDiesel mode: 161 km/h (100 mph)
Electric mode: 201 km/h (125 mph)
Power outputContinuous electric at rail: 5,360 hp (4,000 kW) [15]
Max electric at rail: 5,900 hp (4,400 kW) [16]
Max diesel at rail: 3,600 hp (2,700 kW) [15] (no HEP)
Max diesel at rail: 2,734 hp (2,039 kW) (With HEP for 8 car train) [11]
1,567 kW (2,101 hp) each,
3,108 kW (4,168 hp) at shaft. inserted
Tractive effort 316 kN (71,000 lbf) starting
262 kN (59,000 lbf) continuous electric @55 km/h (34 mph) [17]
291 kN (65,000 lbf) continuous diesel @25.2 km/h (16 mph) [18] [11]
Factor of adh. 4.056
Brakeforceelectric regenerative 4,000 kW (5,400 hp)
electric dynamic 1,300 kW (1,700 hp)
maximum electric brake effort 150 kN (34,000 lbf)
Career
Operators NJ Transit
Exo
NumbersNJT: 4500-4534 (45DP) [19]
NJT: 4535-4559 (45A)
Exo: 1350-1369 [19]
First runNJT: May 30, 2012 [20]
* NJT locos, † Exo locos
Sources : [21] [22] except where noted

The Bombardier ALP-45DP is a type of single cab dual-mode locomotive operated by New Jersey Transit and Exo. The locomotive was designed and originally built by Bombardier until 2021, and by Alstom since 2021.

Contents

Operators

New Jersey Transit

NJ Transit ALP-45DP #4513 at Convent Station ALP-45DP Convent Station.jpg
NJ Transit ALP-45DP #4513 at Convent Station

New Jersey Transit (NJT) purchased 26 ALP-45DPs in 2008, with an option to purchase up to 63 additional units. [2] [23] The first locomotive from the order was displayed at Innotrans in 2010 [24] and was officially unveiled at Pennsylvania Station on May 11, 2011. [25] NJT purchased 9 additional units in July 2010. [3] [26] [27] [28] The locomotives from these two orders are numbered 4500–4534.

The ALP-45DPs are used on the Morristown Line, Montclair-Boonton Line, Raritan Valley Line, Northeast Corridor Line, and the North Jersey Coast Line, providing a one-seat ride into New York Penn Station. [29] They are also used on the Main Line, Bergen County Line, Pascack Valley Line, and occasionally on Metro-North Railroad's Port Jervis Line. [19] They have replaced all GP40FH-2 locomotives (except those owned by Metro-North), and a majority of the GP40PH-2 and F40PH-2CAT locomotives.

In December 2017, NJT purchased 17 additional ALP-45DPs, labelled as the ALP-45A. [30] [31] [32] On June 28, 2019, Bombardier announced that the first car body from this order was inspected and approved for final assembly. [33] In July 2020, NJT ordered 8 additional ALP-45As, leaving 29 options. Originally slated to replace the remaining GP40PH-2B locomotives, the 25 locomotives are now intended to replace the majority of the PL42AC fleet, due to the PL42AC's unreliability and inability to be upgraded to meet new Environmental Protection Agency standards. [34] The ALP-45A locomotives from the 2017 and 2020 orders will be numbered 4535–4559. On December 15, 2020, the first unit from the order, #4535, has left the Kassel factory and was delivered in January 2021. [35] #4536 was the first ALP-45A unit to enter revenue service on July 30, 2021. [36] Following the purchase of Bombardier Transportation in January 2021, Alstom will be responsible for completing the ALP-45A order.

In 2019, NJ Transit unveiled locomotive 4519 painted in a heritage Erie Lackawanna scheme. [37]

Exo

Exo ALP-45DP #1356 at Vendome Station AMT Train Vaudreuil.jpg
Exo ALP-45DP #1356 at Vendôme Station

In 2008, the predecessor of Montreal's Exo, the Agence métropolitaine de transport (AMT), ordered 20 locomotives (with an option for 10 more), with an order value of €152 million. These units replaced the remaining GP9s, F40PHRs, and all ex-NJT equipment. The locomotives are for use on the Vaudreuil-Hudson line, Saint-Jérôme line, Mont-Saint-Hilaire line, and Mascouche line to Montreal Central Station via the 25 kV AC electrified Mount Royal Tunnel. [2] They are numbered 1350-1369. [19]

The first unit, AMT 1350, arrived in Montreal on June 9, 2011, after being shipped to Newark and then moving north to its new home. [38]

The locomotives originally ran in electric mode along the entirety of the Deux-Montagnes line and along the Mascouche line between Montreal Central Station and Ahuntsic station. However, in January 2020, the electrified portion of the Exo network was permanently closed, so the locomotives now operate exclusively in diesel mode. [39] The Deux-Montagnes line is being converted into the mainline of the Réseau express métropolitain light metro system and the Mascouche line will be truncated to Côte-de-Liesse station.

Design

The ALP-45DP is an electro-diesel locomotive design, based on Bombardier's ALP-46/A and TRAXX locomotives. [40] [note 3] Design requirements included weight less than 288,000 lb (131,000 kg), length less than 75 ft (22.86 m), and EPA-compliant emissions. [23]

The challenge of fitting diesel and electric systems within the same carbody while staying within axle load limits, led to the choice of two high-speed, twelve-cylinder Caterpillar 3512C HD diesel engines rated at 2,100 hp (1.6 MW) each. [23] The systems for the two engines are independent for example, each has a separate 3,400 L (750 imp gal; 900 US gal) fuel supply (split across four total tanks owing to NJT regulations regarding tunnel operations that limit individual fuel tank capacity to 400 US gal (1,500 L; 330 imp gal) [19] ) allowing the locomotive to operate on one engine in case of failure or under low load. The engines are capable of shorter startup times from idle to load (100 rpm/s) than traditional medium speed diesel engines. [41] To achieve mass balance and distribution within the locomotive, the engines are situated on either side of the transformer, which is located in the center of the locomotive. [24] The engines are manufactured in Lafayette, Indiana, USA. [5]

When running under diesel power, each engine powers a MITRAC TG 3800 A alternator having an output of 1700 kVA @ 1800 rpm. [9] Power output is reduced from 6,700 hp (5.0 MW) (including HEP) in electric mode to 4,200 hp (3.1 MW) in diesel mode; [23] under diesel power, the same tractive effort curve is maintained up to around 25 km/h (16 mph) (assuming 2,734 hp (2.039 MW) available for traction after HEP reductions for an 8 car train). [42] [11]

The pantograph is of TransTech design. [43] The ABB main transformer has four secondary taps, switchable to supply 1360 V under all electrification supplies. There are two MITRAC TC 3360 DP V01 DC-AC main converters, [44] one per bogie, which convert the single phase input to a 2,8 kV intermediate DC-bus, using IGBT based switches. Each DC bus powers two traction converters, with each traction inverter powering a separate traction motor. [45] [46] The locomotive uses four 1,300 kW (1,700 hp) MITRAC DR 3700 F [note 1] fully suspended, bogie mounted traction drives to reduce unsprung mass. [48] [49] [43]

In addition to taps for the traction inverters, the locomotive transformer supplies 1 100 kVA and 140 kVA for head-end power and locomotive auxiliary power. [46] Two partially-redundant auxiliary inverters are incorporated into the two main converter units. [45] [50] Normally, one provides a 3 phase, 480 V 60 Hz 1100 kVA supply for head end power, while the other provides several 3 phase variable voltage, variable frequency supplies (up to 480 V 60 Hz) for the traction motor fans, transformer fans, and inverter cooling circuit motors. [50] In the event of a converter failure, it is possible to route all supply through a single converter, ensuring redundancy and margin of error operations. [51]

HEP is maintained when changing power modes, due to the fact that the pantograph is not lowered until the prime movers have been started (when changing from electric to diesel), and the prime movers are not shut down until the pantograph has made contact with the catenary wire (when changing from diesel to electric). In either case, the changeover takes approximately 100 seconds. [43] The locomotive is capable of performing a mode change while on the move; however, NJ Transit has reprogrammed their locomotives to only allow a mode change during a station stop. This is most likely to prevent the loss of power during the transition to diesel mode with a limited amount of wire left.

The braking system uses Wabtec's Fastbrake control system, with two disc brakes per axle. [52] The mechanical parts of the brake system were supplied by Faiveley Transport. [53] Compressed air supply is charged through a Knorr screw compressor with a capacity of 3,400 L/min (750 imp gal/min; 900 US gal/min) at 10 bar (1,000 kPa; 150 psi) pressure, [54] stored in two 480 L (110 imp gal; 130 US gal) air reservoirs. [52] The dynamic and regenerative braking system operates under all three NJT electrical systems. [9] In addition, the locomotive, while in diesel mode, is capable of routing power generated by the electric brake to HEP and locomotive auxiliary power requirements in addition to the dynamic brake resistor. [55]

The locomotives are within Amtrak's A-05-1355 structure gauge and meet CFR and AAR crashworthiness standards. [43] The diesel engines meet Tier 3 EPA emission standards, and work is being done to enable an upgrade to Tier 4 standards, which took effect on January 1, 2015. [56] Total length is 21.8 m (72 ft), approximately 2 m (6 ft 7 in) longer than the ALP-46A. [24]

The bodyshells of the locomotive were constructed at Bombardier's Wrocław site, the bogies at Siegen, and the alternators at Hennigsdorf factory. The locomotives were assembled at Kassel. [57]

Notes

  1. 1 2 Each traction motor drive- unit consists of a MITRAC TM 3700F forced air cooled, three phase induction (asynchronous) motor, with a MITRAC GB 3700 helical spur gear and hollow shaft drive. [47]
  2. Multiple working in dual mode with locomotives of the same class. NJT: Electric mode also with ALP-46, and ALP-44. Diesel mode with NJT PL42AC and GP40. [13]
  3. "ALP" refers to "American Locomotive Passenger"; "4" indicates the number of axles; "5" refers to the power class, ~5MW; "DP" indicates dual power. [29]

Related Research Articles

<span class="mw-page-title-main">Diesel multiple unit</span> Diesel-powered railcar designed to be used in formations of 2 or more cars

A diesel multiple unit or DMU is a multiple-unit train powered by on-board diesel engines. A DMU requires no separate locomotive, as the engines are incorporated into one or more of the carriages. Diesel-powered single-unit railcars are also generally classed as DMUs. Diesel-powered units may be further classified by their transmission type: diesel–mechanical DMMU, diesel–hydraulic DHMU, or diesel–electric DEMU.

<span class="mw-page-title-main">Multiple unit</span> Self-propelled train

A multiple-unit train or simply multiple unit (MU) is a self-propelled train composed of one or more carriages joined, which when coupled to another multiple unit can be controlled by a single driver, with multiple-unit train control.

<span class="mw-page-title-main">EMD AEM-7</span> Twin-cab four-axle 7,000 hp (5.2 MW) B-B electric locomotive built by Electro-Motive Division

The EMD AEM-7 is a twin-cab four-axle 7,000 hp (5.2 MW) B-B electric locomotive built by Electro-Motive Division (EMD) and ASEA between 1978 and 1988. The locomotive is a derivative of the Swedish SJ Rc4 designed for passenger service in the United States. The primary customer was Amtrak, which bought 54 for use on the Northeast Corridor and Keystone Corridor. Two commuter operators, MARC and SEPTA, also purchased locomotives, for a total of 65.

<span class="mw-page-title-main">Electric locomotive</span> Locomotive powered by electricity

An electric locomotive is a locomotive powered by electricity from overhead lines, a third rail or on-board energy storage such as a battery or a supercapacitor. Locomotives with on-board fuelled prime movers, such as diesel engines or gas turbines, are classed as diesel-electric or gas turbine-electric and not as electric locomotives, because the electric generator/motor combination serves only as a power transmission system.

<span class="mw-page-title-main">GE Genesis</span> Series of locomotives

The GE Genesis is a series of passenger diesel locomotives built by GE Transportation for Amtrak, Metro-North, and Via Rail between 1992 and 2001. A total of 321 units were produced.

<span class="mw-page-title-main">Gladstone Branch</span> Commuter rail line in New Jersey

The Gladstone Branch is a commuter rail line operated by NJ Transit from Gladstone station, in the U.S. state of New Jersey, to either Hoboken Terminal or New York Penn Station. It is one of two branches of the Morris & Essex Lines.

<span class="mw-page-title-main">Morristown Line</span> Commuter rail line in New Jersey

The Morristown Line is an NJ Transit commuter rail line connecting Morris and Essex counties to New York City, via either New York Penn Station or Hoboken Terminal. Out of 60 inbound and 58 outbound daily weekday trains, 28 inbound and 26 outbound Midtown Direct trains use the Kearny Connection to Penn Station; the rest go to Hoboken. Passengers can transfer at Newark Broad Street or Summit to reach the other destination. On rail system maps the line is colored dark green, and its symbol is a drum, a reference to Morristown's history during the American Revolution.

The Waterfront Connection allows NJ Transit trains to switch from the former Pennsylvania Railroad main line to the former Delaware, Lackawanna and Western Railroad main line, now NJ Transit Rail Operations. The connection opened on September 9, 1991, at a cost of $16 million.

<span class="mw-page-title-main">North Jersey Coast Line</span> Commuter rail line in New Jersey

The North Jersey Coast Line is a commuter rail line running from Rahway to Bay Head, New Jersey, traversing through the Jersey Shore region. Operated by New Jersey Transit, the line is electrified as far south as Long Branch. On rail system maps it is colored light blue, and its symbol is a sailboat. The line runs along the former New York & Long Branch Railroad, which was co-owned by the Central Railroad of New Jersey and the Pennsylvania Railroad.

<span class="mw-page-title-main">Raritan Valley Line</span> Commuter rail line in New Jersey and New York

The Raritan Valley Line is a commuter rail service operated by New Jersey Transit (NJT) which serves passengers in municipalities in Union, Somerset, Middlesex, Essex and Hunterdon counties in the Raritan Valley region in central New Jersey, United States. The line's most frequent western terminus is Raritan station in Raritan. Some weekday trains continue farther west and terminate at the High Bridge station, located in High Bridge. Most eastbound trains terminate in Newark; passengers are able to transfer to NJ Transit using a combined ticket or PATH and Amtrak to New York City. A limited number of weekday trains continue directly to New York.

<span class="mw-page-title-main">Electro-diesel locomotive</span> Railway locomotive capable of running either under electrical or diesel power

An electro-diesel locomotive is a type of locomotive that can be powered either from an electricity supply or by using the onboard diesel engine. For the most part, these locomotives are built to serve regional, niche markets with a very specific purpose.

<span class="mw-page-title-main">ABB ALP-44</span> Swedish/US electric locomotive class

The ABB ALP-44 was an electric locomotive which was built by Asea Brown Boveri of Sweden between 1989 and 1997 for the New Jersey Transit and SEPTA railway lines.

<span class="mw-page-title-main">EMD GP40-based passenger locomotives</span>

The passenger locomotives derivatives of the General Motors EMD GP40 diesel-electric locomotive have been, and continue to be, used by multiple passenger railroads in North America. For passenger service, the locomotives required extra components for providing steam or head-end power (HEP) for heating, lighting and electricity in passenger cars. Most of these passenger locomotives were rebuilt from older freight locomotives, while some were built as brand new models.

<span class="mw-page-title-main">Alstom Traxx</span> Family of locomotives manufactured by Alstom, originally by Bombardier

Alstom Traxx is a modular product platform of mainline diesel-electric and electric locomotives. It was produced originally by Bombardier Transportation and later Alstom, and was built in both freight and passenger variants. The first version was a dual-voltage AC locomotive built for German railways from the year 2000. Later types included DC versions, as well as quadruple-voltage machines, able to operate on most European electrification schemes: 1.5/3.0 kV DC and 15/25 kV AC. The family was expanded in 2006 to include diesel-powered versions. Elements common to all variants include steel bodyshells, two bogies with two powered axles each, three-phase asynchronous induction motors, cooling exhausts on the roof edges, and wheel disc brakes.

<span class="mw-page-title-main">Alstom PL42AC</span> Model of diesel-electric locomotives built by Alstom

The Alstom PL42AC is a class of four axle B-B diesel-electric locomotive designed by Alstom in association with GM-EMD. 33 were built between 2003 and 2006 for NJ Transit Rail Operations.

<span class="mw-page-title-main">Bombardier ALP-46</span> German-built US electric locomotive class

The Bombardier ALP-46 is an electric locomotive built in Germany by Bombardier between 2001 and 2002 for use in the United States. It is derived from the German Class 101. New Jersey Transit (NJT) is the only railroad to operate this locomotive model, which is used across the electrified NJT system, specifically on the Northeast Corridor, North Jersey Coast, Morris & Essex, and Montclair-Boonton lines. These locomotives replaced the ALP-44 locomotives, which were all retired by 2012.

<span class="mw-page-title-main">British Rail Class 88</span> Electro-diesel railway locomotive used in the United Kingdom

The British Rail Class 88 is a type of mainline mixed traffic electro-diesel locomotive manufactured by Vossloh España/Stadler Rail Valencia for Direct Rail Services (DRS) in the United Kingdom. The locomotive is part of the Stadler Euro Dual family. It is the first dual-mode locomotive in the UK to use the 25 kV AC electrification.

<span class="mw-page-title-main">Atlantic City Express Service</span> New York-New Jersey train service

The Atlantic City Express Service (ACES) was an inter-city rail service, operating from February 2009 until September 2011. It was operated by New Jersey Transit under contract and funded by the Casino Reinvestment Development Authority, with support from the Borgata, Caesars, and Harrah's casinos. The train provided summer seasonal service between New York City and Atlantic City three days a week, operating along the Northeast Corridor and Atlantic City Line. The train was formally cancelled on March 9, 2012.

<span class="mw-page-title-main">Stadler Eurolight</span> Diesel-electric locomotive

The Stadler Eurolight is the brand name for a family of 4-axle Bo'Bo' mainline diesel-electric locomotives with sub-20-tonne axleloads for passenger and freight trains produced by Stadler Rail.

<span class="mw-page-title-main">Electro-diesel multiple unit</span> Hybrid overhead line-/fossil fuel engine-powered passenger train

An electro-diesel multiple unit (EDMU) or bi-mode multiple unit (BMU) is a form of a multiple unit train that can be powered either by electric power picked up from the overhead lines or third rail or by using an onboard diesel engine, driving an electric generator, which produces alternating current (AC) or direct current (DC) electric power.

References

  1. "NJT ALP-45 Dual Power". The European Modern Electric Locomotive Database. Railcolor.net. Archived from the original on 2019-12-24. Retrieved 2019-10-05.
  2. 1 2 3 4 "Bombardier to supply electro-diesel locos". Railway Gazette International. 19 August 2008. The locomotives will be a dual-mode diesel and AC overhead electric evolution of the ALP-46 electric design in service with NJ Transit since 2002
  3. 1 2 "NJ Transit approves FY2011 spending". Railway Gazette International. 19 July 2010. An order for 100 additional double-deck commuter cars, valued at up to $293·5m, and 9 additional dual-mode locomotives costing $78·8m, was approved on July 15 by New Jersey Transit, exercising options on existing orders with Bombardier.
  4. Brugger et al. 2000, p. 561.
  5. 1 2 Pernička & Kuchta 2010, pp. 53, 56.
  6. "3512C HD Petroleum Engine" (PDF), Cat Oil and Gas Specification sheet for 3512C HD engine from CAT
  7. MITRAC
  8. Pernička & Kuchta 2010, p. 56, "diesels".
  9. 1 2 3 4 Pernička & Kuchta 2010, p. 56.
  10. Brugger et al. 2000, p. 561-2.
  11. 1 2 3 4 Vitins 2011, Table 1.
  12. Pernička & Kuchta 2010, p. 56, quote : Operation in multiple is possible - two locomotives being the maximum, and this is also feasible when the locomotives are operating in pushpull mode. It is also possible for ALP-45DPs to run in multiple with ALP-46(A) and other existing NJT (and Exo) vehicles..
  13. "Reprint from NJ 1: 1. Editorial and Insert – The Terrigal Conference". NJ. 40 (2): 160–174. 2016-07-02. doi:10.1080/14452294.2016.1279463. ISSN   1445-2294. S2CID   218835187.
  14. Canetta & Bikle 2010, Bogie, p.6.
  15. 1 2 "Reprint from NJ 1: 1. Editorial and Insert – The Terrigal Conference". NJ. 40 (2): 160–174. 2016-07-02. doi:10.1080/14452294.2016.1279463. ISSN   1445-2294. S2CID   218835187.
  16. Pernička & Kuchta 2010, p. 55..For a limited time a maximum power of 4,400 kW can be delivered
  17. Allenbach, Jean-Marc (November 11, 2009). "Fiche documentaire BoBo NJT ALP 45-DP" (PDF) (in French). Retrieved June 11, 2011.
  18. Brugger et al. 2000, p. 562.
  19. 1 2 3 4 5 Pernička & Kuchta 2010, p. 58.
  20. Vantuono, William (30 May 2012), "NJT's ALP-45DP enters revenue service", Railway Age
  21. Pernička & Kuchta 2010, "Principal Technical Data", p.53
  22. Canetta & Bikle 2010.
  23. 1 2 3 4 Vantuono 2008, p. 18.
  24. 1 2 3 "ALP-45DP electro-diesel locomotive debut". Railway Gazette International. 23 September 2010. With an overall length of 21·8 m, the dual-mode loco is around 2 m longer than the electric version. Careful design of the internal layout and has helped to keep weight of the four-axle loco to 130 tonnes. ... It has a pair of Caterpillar 3512C engines rated at 2 100 hp arranged symmetrically around the transformer and converter pack to balance the weight.
  25. "New Jersey Transit unveils first ALP-45 loco", www.railwaygazette.com, 16 May 2011
  26. "NJ Transit Orders Modern Rail and Bus Equipmjent". NJ Transit. 14 July 2010. Archived from the original on 22 December 2019. Retrieved 25 June 2012.
  27. "NJ Transit approves capital, operating budgets", www.businessweek.com, 14 July 2010, archived from the original on September 23, 2015
  28. DUAL POWER LOCOMOTIVE PROCUREMENT =, archived from the original on 2019-12-20, retrieved 2012-04-17
  29. 1 2 Pernička & Kuchta 2010, p. 52.
  30. "NJ Transit to order more electro-diesels". International Rail Journal. December 8, 2017. Retrieved December 8, 2017.
  31. "NJT: Bi-level EMUs, more dual-power locos on tap - Railway Age". Railway Age. 2017-11-17. Retrieved 2018-08-27.
  32. TIMES, The STAT TRADE. "New Jersey orders 17 more ALP-45DP locomotives from Bombardier | Supply Chain". www.stattimes.com. Archived from the original on 2020-02-29. Retrieved 2018-01-14.
  33. "First Carbody Inspected and Approved".
  34. Medina, Toni. "NJ TRANSIT". NJ TRANSIT. Retrieved 2021-02-19.
  35. "4535 leaves the Kassel factory".
  36. "NJ Transit welcomes first ALP-45A to the fleet".
  37. "NJ Transit provides more details on heritage units | Trains Magazine".
  38. "AMT electro-diesel arrives in Montréal". Railway Gazette International. June 16, 2011. Archived from the original on September 17, 2011. Retrieved June 17, 2011. Montréal commuter rail authority Agence Métropolitaine de Transport took delivery of its first Bombardier-built ALP-45 electro-diesel locomotives on June 9. [...] Built at Kassel in Germany, the locomotive was shipped from Hamburg to Newark, New Jersey, and moved to Montréal under its own power
  39. "Deux-Montagnes and Mascouche lines - Transitional network from January 2020". REM. Retrieved 2019-09-23.
  40. Pernička & Kuchta 2010, p. 54, ALP-45DP Design Concept.
  41. Canetta & Bikle 2010, p. 4.
  42. Brugger et al. 2000, p. 562, ALP-45DP und ALP-46A Leistungen am Rad.
  43. 1 2 3 4 Vantuono 2011, p. 29.
  44. Pernička & Kuchta 2010, p. 54, "electrical equipment".
  45. 1 2 Pernička & Kuchta 2010, "traction converter".
  46. 1 2 Pernička & Kuchta 2010, p. 55, "transformer".
  47. Canetta & Bikle 2010, Drive Unit, pp.13-14.
  48. Pernička & Kuchta 2010, p. 56, "traction motor".
  49. Vantuono 2008, p. 18, quote : .. to reduce unsprung mass by suspending the traction motors on the trucks, not direct to the axles (like the ALP-46 and newer ALP-46A).
  50. 1 2 Pernička & Kuchta 2010, p. 56, "auxiliary".
  51. Canetta & Bikle 2010, p. 7-8.
  52. 1 2 Canetta & Bikle 2010 , p. 8, Brake
  53. Pernička & Kuchta 2010, p. 56, "braking".
  54. Pernička & Kuchta 2010, p. 56, "compressed air".
  55. Vitins 2011, Page 4, line 25.
  56. Vitins 2011, pp. 5, also 9, quote: "..Caterpillar 3512HD high speed engines were chosen for the diesel mode. ... they meet Tier3 exhaust emission standards. A solution is now being prepared to meet Tier4".
  57. Pernička & Kuchta 2010, pp. 56, 58.

Sources

Further reading