Business process mapping

Last updated

Business process mapping refers to activities involved in defining what a business entity does, who is responsible, to what standard a business process should be completed, and how the success of a business process can be determined.

Contents

The main purpose behind business process mapping is to assist organizations in becoming more effective. A clear and detailed business process map or diagram allows outside firms to come in and look at whether or not improvements can be made to the current process.

Business process mapping takes a specific objective and helps to measure and compare that objective alongside the entire organization's objectives to make sure that all processes are aligned with the company's values and capabilities.

International Organization for Standardization or ISO 9001  : 2015 encourages a process approach to quality management. The relationship between each process within the organization and how those interactions impact Quality Management is significant. [1]

History

Early history

The first structured method for documenting process flow, the flow process chart, was introduced by Frank Gilbreth to members of ASME in 1921 as the presentation “Process Charts—First Steps in Finding the One Best Way”. Gilbreth's tools were quickly integrated into industrial engineering curricula. In the early 1930s industrial engineer Allan H. Mogensen began training business people by using these tools of industrial engineering at his Work Simplification Conferences in Lake Placid, New York. A 1944 graduate of Mogensen's class, Art Spinanger, took the tools back to Procter and Gamble where he developed their work simplification program called the Deliberate Methods Change Program. Another 1944 graduate, Ben S. Graham, Director of Formcraft Engineering at Standard Register Industrial, adapted the flow process chart to information processing with his development of the multi-flow process chart to display multiple documents and their relationships. In 1947, ASME adopted a symbol set derived from Gilbreth's original work as the ASME Standard for Process Charts.

Business process mapping, also known as process charting, has become much more prevalent and understood in the business world in recent years. Process maps can be used in every section of life or business.

The Major Steps of Process Improvement using Process Mapping

  1. Process identification - identify objectives, scope, players and work areas.
  2. Information gathering - gather process facts (what, who, where, when) from the people who do the work.
  3. Process Mapping - convert facts into a process map.
  4. Analysis - work through the map, challenging each step (what-why?, who-why?, where-why?, when-why?, how-why?)
  5. Develop/Install New Methods - eliminate unnecessary work, combine steps, rearrange steps, add new steps where necessary
  6. Manage process - maintain process map in library, review routinely, and monitor process for changes

Process mapping is capable of supporting several important business goals:

Recent developments

Process mapping has overlapped with software development incorporating tools that can attach metadata to activities, drivers and triggers to provide some automation of software process coding.

Quality improvement practitioners have noted that various graphical descriptions of processes can be useful. These include: detailed flow-charts, work flow diagrams and value stream maps. Each map is helpful depending on the process questions and theories being considered. In these situations process map implies the use of process flow and the current understanding of the causal structure.

Six Sigma practitioners use the term Business Process Architecture to describe the mapping of business processes as series of cross-functional flowcharts. Under this school of thought, each flowchart is of a certain level (between 0 and 4) based on the amount of detail the flowchart contains. A level 0 flowchart represents the least amount of detail, and usually contains one or two steps. A level 4 flowchart represents the most detail, and can include hundreds of steps. At this level every task, however minor, is represented.

Primary example

Proposed Patient Appointment Procedure Proposed Patient Appointment Procedure.png
Proposed Patient Appointment Procedure

Flowchart is a primary type of business process mapping. It consists of some symbols such as arrows, circles, diamonds, boxes, ovals, or rectangles. The type of Flowchart just described is sometimes referred to as a "detailed" flowchart because it includes in detail, the inputs, activities, decision points, and outputs of any process.[ citation needed ]

The example is Proposed Patient Appointment Procedure. It starts with "preparation of appointment book" followed by a decision whether the appointment is shore or fleet. If the appointment is fleet, inform patient they can call 1500 to make own appointments for next few days, if the appointment is shore, confirm 24 hours prior to appointment. Next confirm that the patient confirmed. If a patient did not call, the appointment is canceled, otherwise the patient is given a confirmation number. Finally confirm that the patient showed for the appointment. If not, a standby patient is placed in the appointment slot, the appointment book is marked "Failure" and a failure report is submitted from front desk to fleet liaison. If a patient showed for appointment, put "Patient showed" in appointment book.

Example

An easy example to follow is making breakfast:

Makebreakfast.gif

We must first understand that making breakfast is a process. The ingredients are the inputs and the final breakfast ready to be served is the output. This graph shows the breakdown of each process vertically and horizontally. For instance, cooking ingredients is broken down into all of the different tasks that need to be done: cook bacon, cook eggs, toast bread, and fry potatoes. These tasks are then broken down further below. In order to cook eggs, one must first heat the pan, pour the mixture, stir mixture, add pepper, and remove eggs. This is a prime example of how process mapping can be used in any situation/process in order to understand all of the different parts so that we can complete the process with a better understanding for more efficiency. Although this is just a simple example, many aspects of business, including supply chain, operations, marketing, finance, and accounting, use similar process mapping activities to improve efficiency.

See also

Related Research Articles

Six Sigma () is a set of techniques and tools for process improvement. It was introduced by American engineer Bill Smith while working at Motorola in 1986.

Quality assurance (QA) is the term used in both manufacturing and service industries to describe the systematic efforts taken to assure that the product(s) delivered to customer(s) meet with the contractual and other agreed upon performance, design, reliability, and maintainability expectations of that customer. The core purpose of Quality Assurance is to prevent mistakes and defects in the development and production of both manufactured products, such as automobiles and shoes, and delivered services, such as automotive repair and athletic shoe design. Assuring quality and therefore avoiding problems and delays when delivering products or services to customers is what ISO 9000 defines as that "part of quality management focused on providing confidence that quality requirements will be fulfilled". This defect prevention aspect of quality assurance differs from the defect detection aspect of quality control and has been referred to as a shift left since it focuses on quality efforts earlier in product development and production and on avoiding defects in the first place rather than correcting them after the fact.

A business process, business method or business function is a collection of related, structured activities or tasks performed by people or equipment in which a specific sequence produces a service or product for a particular customer or customers. Business processes occur at all organizational levels and may or may not be visible to the customers. A business process may often be visualized (modeled) as a flowchart of a sequence of activities with interleaving decision points or as a process matrix of a sequence of activities with relevance rules based on data in the process. The benefits of using business processes include improved customer satisfaction and improved agility for reacting to rapid market change. Process-oriented organizations break down the barriers of structural departments and try to avoid functional silos.

<span class="mw-page-title-main">Flowchart</span> Diagram that represents a workflow or process

A flowchart is a type of diagram that represents a workflow or process. A flowchart can also be defined as a diagrammatic representation of an algorithm, a step-by-step approach to solving a task.

<span class="mw-page-title-main">Business process modeling</span> Activity of representing processes of an enterprise

Business process modeling (BPM) in business process management and systems engineering is the activity of representing processes of an enterprise, so that the current business processes may be analyzed, improved, and automated. BPM is typically performed by business analysts, who provide expertise in the modeling discipline; by subject matter experts, who have specialized knowledge of the processes being modeled; or more commonly by a team comprising both. Alternatively, the process model can be derived directly from events' logs using process mining tools.

<span class="mw-page-title-main">Time and motion study</span> Business efficiency technique

A time and motion study is a business efficiency technique combining the Time Study work of Frederick Winslow Taylor with the Motion Study work of Frank and Lillian Gilbreth. It is a major part of scientific management (Taylorism). After its first introduction, time study developed in the direction of establishing standard times, while motion study evolved into a technique for improving work methods. The two techniques became integrated and refined into a widely accepted method applicable to the improvement and upgrading of work systems. This integrated approach to work system improvement is known as methods engineering and it is applied today to industrial as well as service organizations, including banks, schools and hospitals.

A quality circle or quality control circle is a group of workers who do the same or similar work, who meet regularly to identify, analyze and solve work-related problems. It consists of minimum three and maximum twelve members in number. Normally small in size, the group is usually led by a supervisor or manager and presents its solutions to management; where possible, workers implement the solutions themselves in order to improve the performance of the organization and motivate employees. Quality circles were at their most popular during the 1980s, but continue to exist in the form of Kaizen groups and similar worker participation schemes.

<span class="mw-page-title-main">Swimlane</span> Diagram in flowcharts

A swimlane is used in process flow diagrams, or flowcharts, that visually distinguishes job sharing and responsibilities for sub-processes of a business process. Swimlanes may be arranged either horizontally or vertically.

The concept of operational excellence was first introduced in the early 1970s by Dr. Joseph M. Juran while teaching Japanese business leaders how to improve quality. It was formalized in the United States in the 1980s in response to "the crisis" among large companies whose market share was shrinking due to quality goods imported from Japan.

Benjamin S. Graham, Sr. (1900–1960) was an American organizational theorist and consultant known as a pioneer in the development and application of scientific management and industrial engineering techniques to the office and factory clerical work. He is recognized as the founder of paperwork simplification. He saw a growing need for improvement in information processing back in the 1940s.

<span class="mw-page-title-main">Value-stream mapping</span> Lean-management method for analyzing the current state and designing a future state

Value-stream mapping, also known as material- and information-flow mapping, is a lean-management method for analyzing the current state and designing a future state for the series of events that take a product or service from the beginning of the specific process until it reaches the customer. A value stream map is a visual tool that displays all critical steps in a specific process and easily quantifies the time and volume taken at each stage. Value stream maps show the flow of both materials and information as they progress through the process.

Quality engineering is the discipline of engineering concerned with the principles and practice of product and service quality assurance and control. In software development, it is the management, development, operation and maintenance of IT systems and enterprise architectures with a high quality standard.

In business, engineering, and manufacturing, quality – or high quality – has a pragmatic interpretation as the non-inferiority or superiority of something ; it is also defined as being suitable for the intended purpose while satisfying customer expectations. Quality is a perceptual, conditional, and somewhat subjective attribute and may be understood differently by different people. Consumers may focus on the specification quality of a product/service, or how it compares to competitors in the marketplace. Producers might measure the conformance quality, or degree to which the product/service was produced correctly. Support personnel may measure quality in the degree that a product is reliable, maintainable, or sustainable. In such ways, the subjectivity of quality is rendered objective via operational definitions and measured with metrics such as proxy measures.

<span class="mw-page-title-main">Deployment flowchart</span> Business process mapping used to articulate the steps and stakeholders of a given process

A deployment flowchart is a business process mapping tool used to articulate the steps and stakeholders of a given process.

<span class="mw-page-title-main">Function model</span>

In systems engineering, software engineering, and computer science, a function model or functional model is a structured representation of the functions within the modeled system or subject area.

<span class="mw-page-title-main">Functional flow block diagram</span>

A functional flow block diagram (FFBD) is a multi-tier, time-sequenced, step-by-step flow diagram of a system's functional flow. The term "functional" in this context is different from its use in functional programming or in mathematics, where pairing "functional" with "flow" would be ambiguous. Here, "functional flow" pertains to the sequencing of operations, with "flow" arrows expressing dependence on the success of prior operations. FFBDs may also express input and output data dependencies between functional blocks, as shown in figures below, but FFBDs primarily focus on sequencing.

<span class="mw-page-title-main">Industrial engineering</span> Branch of engineering which deals with the optimization of complex processes or systems

Industrial engineering is an engineering profession that is concerned with the optimization of complex processes, systems, or organizations by developing, improving and implementing integrated systems of people, money, knowledge, information and equipment. Industrial engineering is central to manufacturing operations.

<span class="mw-page-title-main">Flow process chart</span> Industrial engineering graphical representation

The flow process chart is a graphical and symbolic representation of the activities performed on the work piece during the operation in industrial engineering.

Allan Herbert Mogensen, known as Mogy, was an American industrial engineer, and industry consultant, and an authority in the field of work simplification and office management. He is noted for popularizing flowcharts in the 1930s, and is remembered as "father of work simplification"

The Gilbreth Medal is a former management award (1931–2002) for outstanding contributions to Industrial Engineering, established in 1931 by the Society of Industrial Engineers in honor of Frank Bunker Gilbreth Sr.

References

  1. Dias, S., & Saraiva, P. M. (2004). Use Basic Quality Tools To Manage Your Processes. Quality Progress, 37(8), 47-53. Retrieved from http://sharpthinkers.info/articles/Basic_Tools.pdf

Further reading