Cadmium phosphide

Last updated
Cadmium phosphide
Names
Other names
Tricadmium diphosphide
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.031.437 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 234-595-5
PubChem CID
  • InChI=1S/3Cd. 2P/q3*+2;2*-3
    Key: BYWFNUBYQJKAKF-UHFFFAOYSA-N
  • [Cd+2].[Cd+2].[Cd+2].[P-3].[P-3]
Properties
Cd3P2
Molar mass 399.178 g/mol
Appearancebluish white [1] or gray [2]
Density 5.96 g/cm3 [1]
Melting point 700 [1]  °C (1,292 °F; 973 K)
Electron mobility 1500 cm2/Vs [1]
3.88 [1]
Structure
Tetragonal
Hazards
GHS labelling:
GHS-pictogram-exclam.svg GHS-pictogram-silhouette.svg GHS-pictogram-pollu.svg
Warning
H302, H312, H314, H332, H350, H370, H410
P201, P202, P210, P233, P261, P264, P270, P271, P273, P280, P301+P312, P302+P352, P304+P340, P308+P313, P312, P330, P362+P364, P391, P405, P501
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Cadmium phosphide (Cd3 P2) is an inorganic chemical compound. It is a grey or white bluish solid semiconductor material with a bandgap of 0.5 eV. [1] It has applications as a pesticide, material for laser diodes and for high-power-high-frequency electronics. [1]

Contents

Synthesis and reactions

Cadmium phosphide can be prepared by the reaction of cadmium with phosphorus:

6 Cd + P4 → 2 Cd3P2

Structure

Cd3P2 has a room-temperature tetragonal form.

The crystalline structure of cadmium phosphide is very similar to that of zinc phosphide (Zn3P2), cadmium arsenide (Cd3As2) and zinc arsenide (Zn3As2). These compounds of the Zn-Cd-P-As quaternary system exhibit full continuous solid-solution. [3]

Applications

Safety

Like other metal phosphides, it is acutely toxic when swallowed due to the formation of phosphine gas when it reacts with gastric acid. It is also carcinogen and dangerous for the skin, eyes and other organs in a large part due to cadmium poisoning.

Related Research Articles

<span class="mw-page-title-main">Indium phosphide</span> Chemical compound

Indium phosphide (InP) is a binary semiconductor composed of indium and phosphorus. It has a face-centered cubic ("zincblende") crystal structure, identical to that of GaAs and most of the III-V semiconductors.

<span class="mw-page-title-main">Cadmium arsenide</span> Chemical compound

Cadmium arsenide (Cd3As2) is an inorganic semimetal in the II-V family. It exhibits the Nernst effect.

<span class="mw-page-title-main">Cadmium sulfide</span> Chemical compound

Cadmium sulfide is the inorganic compound with the formula CdS. Cadmium sulfide is a yellow solid. It occurs in nature with two different crystal structures as the rare minerals greenockite and hawleyite, but is more prevalent as an impurity substituent in the similarly structured zinc ores sphalerite and wurtzite, which are the major economic sources of cadmium. As a compound that is easy to isolate and purify, it is the principal source of cadmium for all commercial applications. Its vivid yellow color led to its adoption as a pigment for the yellow paint "cadmium yellow" in the 18th century.

In chemistry, an arsenide is a compound of arsenic with a less electronegative element or elements. Many metals form binary compounds containing arsenic, and these are called arsenides. They exist with many stoichiometries, and in this respect arsenides are similar to phosphides.

Indium gallium phosphide (InGaP), also called gallium indium phosphide (GaInP), is a semiconductor composed of indium, gallium and phosphorus. It is used in high-power and high-frequency electronics because of its superior electron velocity with respect to the more common semiconductors silicon and gallium arsenide.

<span class="mw-page-title-main">Metalorganic vapour-phase epitaxy</span> Method of producing thin films (polycrystalline and single crystal)

Metalorganic vapour-phase epitaxy (MOVPE), also known as organometallic vapour-phase epitaxy (OMVPE) or metalorganic chemical vapour deposition (MOCVD), is a chemical vapour deposition method used to produce single- or polycrystalline thin films. It is a process for growing crystalline layers to create complex semiconductor multilayer structures. In contrast to molecular-beam epitaxy (MBE), the growth of crystals is by chemical reaction and not physical deposition. This takes place not in vacuum, but from the gas phase at moderate pressures. As such, this technique is preferred for the formation of devices incorporating thermodynamically metastable alloys, and it has become a major process in the manufacture of optoelectronics, such as Light-emitting diodes. It was invented in 1968 at North American Aviation Science Center by Harold M. Manasevit.

<span class="mw-page-title-main">Zinc telluride</span> Chemical compound

Zinc telluride is a binary chemical compound with the formula ZnTe. This solid is a semiconductor material with a direct band gap of 2.26 eV. It is usually a p-type semiconductor. Its crystal structure is cubic, like that for sphalerite and diamond.

<span class="mw-page-title-main">Cadmium oxide</span> Inorganic compound with the formula CdO

Cadmium oxide is an inorganic compound with the formula CdO. It is one of the main precursors to other cadmium compounds. It crystallizes in a cubic rocksalt lattice like sodium chloride, with octahedral cation and anion centers. It occurs naturally as the rare mineral monteponite. Cadmium oxide can be found as a colorless amorphous powder or as brown or red crystals. Cadmium oxide is an n-type semiconductor with a band gap of 2.18 eV at room temperature.

<span class="mw-page-title-main">Zinc phosphide</span> Chemical compound

Zinc phosphide (Zn3P2) is an inorganic chemical compound. It is a grey solid, although commercial samples are often dark or even black. It is used as a rodenticide. Zn3P2 is a II-V semiconductor with a direct band gap of 1.5 eV and may have applications in photovoltaic cells. A second compound exists in the zinc-phosphorus system, zinc diphosphide (ZnP2).

In chemistry, the Grimm–Sommerfeld rule predicts that binary compounds with covalent character that have an average of 4 electrons per atom will have structures where both atoms are tetrahedrally coordinated. Examples are silicon carbide, the III-V semiconductors indium phosphide and gallium arsenide, the II-VI semiconductors, cadmium sulfide, cadmium selenide.

In solid state physics the Ridley–Watkins–Hilsum theory (RWH) explains the mechanism by which differential negative resistance is developed in a bulk solid state semiconductor material when a voltage is applied to the terminals of the sample. It is the theory behind the operation of the Gunn diode as well as several other microwave semiconductor devices, which are used practically in electronic oscillators to produce microwave power. It is named for British physicists Brian Ridley, Tom Watkins and Cyril Hilsum who wrote theoretical papers on the effect in 1961.

Zinc arsenide (Zn3As2) is a binary compound of zinc with arsenic which forms gray tetragonal crystals. It is an inorganic semiconductor with a band gap of 1.0 eV.

Zinc compounds are chemical compounds containing the element zinc which is a member of the group 12 of the periodic table. The oxidation state of zinc in most compounds is the group oxidation state of +2. Zinc may be classified as a post-transition main group element with zinc(II). Zinc compounds are noteworthy for their nondescript appearance and behavior: they are generally colorless, do not readily engage in redox reactions, and generally adopt symmetrical structures.

<span class="mw-page-title-main">Gallium(III) sulfide</span> Chemical compound

Gallium(III) sulfide, Ga2S3, is a compound of sulfur and gallium, that is a semiconductor that has applications in electronics and photonics.

Zinc diphosphide (ZnP2) is an inorganic chemical compound. It is a red semiconductor solid with a band gap of 2.1 eV. It is one of the two compounds in the zinc-phosphorus system, the other being zinc phosphide (Zn3P2).

Zinc cadmium phosphide arsenide (Zn-Cd-P-As) is a quaternary system of group II (IUPAC group 12) and group V (IUPAC group 15) elements. Many of the inorganic compounds in the system are II-V semiconductor materials. The quaternary system of II3V2 compounds, (Zn1−xCdx)3(P1−yAsy)2, has been shown to allow solid solution continuously over the whole compositional range. This material system and its subsets have applications in electronics, optoelectronics, including photovoltaics, and thermoelectrics.

Phosphide iodides or iodide phosphides are compounds containing anions composed of iodide (I) and phosphide (P3−). They can be considered as mixed anion compounds. They are in the category of pnictidehalides. Related compounds include the phosphide chlorides, arsenide iodides antimonide iodides and phosphide bromides.

Phosphide bromides or bromide phosphides are compounds containing anions composed of bromide (Br) and phosphide (P3−) anions. Usually phosphorus is covalently connected into more complex structures. They can be considered as mixed anion compounds. They are in the category of pnictidehalides. Related compounds include the phosphide chlorides, phosphide iodides, nitride bromides, arsenide bromides, and antimonide bromides.

Arsenide bromides or bromide arsenides are compounds containing anions composed of bromide (Br) and arsenide (As3−). They can be considered as mixed anion compounds. They are in the category of pnictidehalides. Related compounds include the arsenide chlorides, arsenide iodides, phosphide bromides, and antimonide bromides.

References

  1. 1 2 3 4 5 6 7 "Cadmium Phosphide (Cd3P2) Semiconductors". azom.com. 2013-08-19. Archived from the original on 2020-10-30. Retrieved 2020-10-25.
  2. "Cadmium Phosphide Cd3P2". americanelements.com. Retrieved 2020-10-25.
  3. Trukhan, V. M.; Izotov, A. D.; Shoukavaya, T. V. (2014). "Compounds and solid solutions of the Zn-Cd-P-As system in semiconductor electronics". Inorganic Materials. 50 (9): 868–873. doi:10.1134/S0020168514090143. S2CID   94409384.