Centipede game

Last updated

In game theory, the centipede game, first introduced by Robert Rosenthal in 1981, is an extensive form game in which two players take turns choosing either to take a slightly larger share of an increasing pot, or to pass the pot to the other player. The payoffs are arranged so that if one passes the pot to one's opponent and the opponent takes the pot on the next round, one receives slightly less than if one had taken the pot on this round, but after an additional switch the potential payoff will be higher. Therefore, although at each round a player has an incentive to take the pot, it would be better for them to wait. Although the traditional centipede game had a limit of 100 rounds (hence the name), any game with this structure but a different number of rounds is called a centipede game.

Contents

The unique subgame perfect equilibrium (and every Nash equilibrium) of these games results in the first player taking the pot on the first round of the game; however, in empirical tests, relatively few players do so, and as a result, achieve a higher payoff than in the subgame perfect and Nash equilibria. These results are taken to show that subgame perfect equilibria and Nash equilibria fail to predict human play in some circumstances. The Centipede game is commonly used in introductory game theory courses and texts to highlight the concept of backward induction and the iterated elimination of dominated strategies, which show a standard way of providing a solution to the game.

Play

One possible version of a centipede game could be played as follows:

Consider two players: Alice and Bob. Alice moves first. At the start of the game, Alice has two piles of coins in front of her: one pile contains 4 coins and the other pile contains 1 coin. Each player has two moves available: either "take" the larger pile of coins and give the smaller pile to the other player or "push" both piles across the table to the other player. Each time the piles of coins pass across the table, the quantity of coins in each pile doubles. For example, assume that Alice chooses to "push" the piles on her first move, handing the piles of 1 and 4 coins over to Bob, doubling them to 2 and 8. Bob could now use his first move to either "take" the pile of 8 coins and give 2 coins to Alice, or he can "push" the two piles back across the table again to Alice, again increasing the size of the piles to 4 and 16 coins. The game continues for a fixed number of rounds or until a player decides to end the game by pocketing a pile of coins.

The addition of coins is taken to be an externality, as it is not contributed by either player.

Formal definition

The centipede game may be written as where and . Players and alternate, starting with player , and may on each turn play a move from with a maximum of rounds. The game terminates when is played for the first time, otherwise upon moves, if is never played.

Suppose the game ends on round with player making the final move. Then the outcome of the game is defined as follows:

Here, denotes the other player.

Equilibrium analysis and backward induction

An extensive form representation of a four-stage centipede game, which ends after four rounds with the money being split. Passing the coins across the table is represented by a move of R (going across the row of the lattice, sometimes also represented by A for across) and pocketing the coins is a move D (down the lattice). The numbers 1 and 2 along the top of the diagram show the alternating decision-maker between two players denoted here as 1 and 2, and the numbers at the bottom of each branch show the payoff for players 1 and 2 respectively. Centipede game.png
An extensive form representation of a four-stage centipede game, which ends after four rounds with the money being split. Passing the coins across the table is represented by a move of R (going across the row of the lattice, sometimes also represented by A for across) and pocketing the coins is a move D (down the lattice). The numbers 1 and 2 along the top of the diagram show the alternating decision-maker between two players denoted here as 1 and 2, and the numbers at the bottom of each branch show the payoff for players 1 and 2 respectively.

Standard game theoretic tools predict that the first player will defect on the first round, taking the pile of coins for himself. In the centipede game, a pure strategy consists of a set of actions (one for each choice point in the game, even though some of these choice points may never be reached) and a mixed strategy is a probability distribution over the possible pure strategies. There are several pure strategy Nash equilibria of the centipede game and infinitely many mixed strategy Nash equilibria. However, there is only one subgame perfect equilibrium (a popular refinement to the Nash equilibrium concept).

In the unique subgame perfect equilibrium, each player chooses to defect at every opportunity. This, of course, means defection at the first stage. In the Nash equilibria, however, the actions that would be taken after the initial choice opportunities (even though they are never reached since the first player defects immediately) may be cooperative.

Defection by the first player is the unique subgame perfect equilibrium and required by any Nash equilibrium, it can be established by backward induction. Suppose two players reach the final round of the game; the second player will do better by defecting and taking a slightly larger share of the pot. Since we suppose the second player will defect, the first player does better by defecting in the second to last round, taking a slightly higher payoff than she would have received by allowing the second player to defect in the last round. But knowing this, the second player ought to defect in the third to last round, taking a slightly higher payoff than he would have received by allowing the first player to defect in the second to last round. This reasoning proceeds backwards through the game tree until one concludes that the best action is for the first player to defect in the first round. The same reasoning can apply to any node in the game tree.

For a game that ends after four rounds, this reasoning proceeds as follows. If we were to reach the last round of the game, Player 2 would do better by choosing d instead of r, receiving 4 coins instead of 3. However, given that 2 will choose d, 1 should choose D in the second to last round, receiving 3 instead of 2. Given that 1 would choose D in the second to last round, 2 should choose d in the third to last round, receiving 2 instead of 1. But given this, Player 1 should choose D in the first round, receiving 1 instead of 0.

There are a large number of Nash equilibria in a centipede game, but in each, the first player defects on the first round and the second player defects in the next round frequently enough to dissuade the first player from passing. Being in a Nash equilibrium does not require that strategies be rational at every point in the game as in the subgame perfect equilibrium. This means that strategies that are cooperative in the never-reached later rounds of the game could still be in a Nash equilibrium. In the example above, one Nash equilibrium is for both players to defect on each round (even in the later rounds that are never reached). Another Nash equilibrium is for player 1 to defect on the first round, but pass on the third round and for player 2 to defect at any opportunity.

Empirical results

Several studies have demonstrated that the Nash equilibrium (and likewise, subgame perfect equilibrium) play is rarely observed. Instead, subjects regularly show partial cooperation, playing "R" (or "r") for several moves before eventually choosing "D" (or "d"). It is also rare for subjects to cooperate through the whole game. For examples see McKelvey and Palfrey (1992), Nagel and Tang (1998) or Krockow et al. (2016) [1] for a survey. Scholars have investigated the effect of increasing the stakes. As with other games, for instance the ultimatum game, as the stakes increase the play approaches (but does not reach) Nash equilibrium play. [2] Since the empirical studies have produced results that are inconsistent with the traditional equilibrium analysis, several explanations of this behavior have been offered. To explain the experimental data, we either need some altruistic agents or some bounded rational agents.

Preference-based explanation

One reason people may deviate from equilibrium behavior is if some are altruistic. The basic idea is that you have a certain probability at each game to play against an altruistic agent and if this probability is high enough, you should defect on the last round rather than the first. If enough people are altruists, sacrificing the payoff of first-round defection is worth the price in order to determine whether or not your opponent is an altruist.

McKelvey and Palfrey (1992) create a model with some altruistic agents and some rational agents who will end up playing a mixed strategy (i.e. they play at multiple nodes with some probability). To match well the experimental data, around 5% of the players need to be altruistic in the model. Elmshauser (2022) [3] shows that a model including altruistic agents and uncertainty-averse agents (instead of rational agents) explain even better the experimental data. Some experiments tried to see whether players who passing a lot would also be the most altruistic agents in other games or other life situations (see for instance Pulford et al [4] or Gamba and Regner (2019) [5] who assessed Social Value Orientation). Players passing a lot were indeed more altruistic but the difference wasn't huge.

Bounded rationality explanation

Rosenthal (1981) suggested that if one has reason to believe his opponent will deviate from Nash behavior, then it may be advantageous to not defect on the first round. Another possibility involves error. If there is a significant possibility of error in action, perhaps because your opponent has not reasoned completely through the backward induction, it may be advantageous (and rational) to cooperate in the initial rounds. The quantal response equilibrium of McKelvey and Palfrey (1995) [6] created a model with agents playing Nash equilibrium with errors and they applied it to the Centipede game.

Another modelling able to explain behaviors in the centipede game is the level-k model, which is a cognitive hierarchy theory  : a L0 player plays randomly, the L1 player best responds to the L0 player, the L2 player best responds to the L1 player and so on. In many games, scholars observed that most of the player were L2 or L3 players, which is consistent with the centipede game experimental data. Garcia-Pola et al. (2020) [7] concluded from an experiment that most of the players either play following a Level-k logic or a Quantal response logic.

However, Parco, Rapoport and Stein (2002) illustrated that the level of financial incentives can have a profound effect on the outcome in a three-player game: the larger the incentives are for deviation, the greater propensity for learning behavior in a repeated single-play experimental design to move toward the Nash equilibrium.

Palacios-Huerta and Volij (2009) find that expert chess players play differently from college students. With a rising Elo, the probability of continuing the game declines; all Grandmasters in the experiment stopped at their first chance. They conclude that chess players are familiar with using backward induction reasoning and hence need less learning to reach the equilibrium. However, in an attempt to replicate these findings, Levitt, List, and Sadoff (2010) find strongly contradictory results, with zero of sixteen Grandmasters stopping the game at the first node.

Qualitative research by Krockow et al., which employed think-aloud protocols that required players in a Centipede game to vocalise their reasoning during the game, indicated a range of decision biases such as action bias or completion bias, which may drive irrational choices in the game. [8]

Significance

Like the prisoner's dilemma, this game presents a conflict between self-interest and mutual benefit. If it could be enforced, both players would prefer that they both cooperate throughout the entire game. However, a player's self-interest or players' distrust can interfere and create a situation where both do worse than if they had blindly cooperated. Although the Prisoner's Dilemma has received substantial attention for this fact, the Centipede Game has received relatively less.

Additionally, Binmore (2005) has argued that some real-world situations can be described by the Centipede game. One example he presents is the exchange of goods between parties that distrust each other. Another example Binmore (2005) likens to the Centipede game is the mating behavior of a hermaphroditic sea bass which takes turns exchanging eggs to fertilize. In these cases, we find cooperation to be abundant.

Since the payoffs for some amount of cooperation in the Centipede game are so much larger than immediate defection, the "rational" solutions given by backward induction can seem paradoxical. This, coupled with the fact that experimental subjects regularly cooperate in the Centipede game, has prompted debate over the usefulness of the idealizations involved in the backward induction solutions, see Aumann (1995, 1996) and Binmore (1996).

See also

Related Research Articles

In game theory, the Nash equilibrium, named after the mathematician John Nash, is the most common way to define the solution of a non-cooperative game involving two or more players. In a Nash equilibrium, each player is assumed to know the equilibrium strategies of the other players, and no one has anything to gain by changing only one's own strategy. The principle of Nash equilibrium dates back to the time of Cournot, who in 1838 applied it to competing firms choosing outputs.

<span class="mw-page-title-main">Ultimatum game</span> Game in economic experiments

The ultimatum game is a game that has become a popular instrument of economic experiments. An early description is by Nobel laureate John Harsanyi in 1961. One player, the proposer, is endowed with a sum of money. The proposer is tasked with splitting it with another player, the responder. Once the proposer communicates their decision, the responder may accept it or reject it. If the responder accepts, the money is split per the proposal; if the responder rejects, both players receive nothing. Both players know in advance the consequences of the responder accepting or rejecting the offer.

Matching pennies is a non-cooperative game studied in game theory. It is played between two players, Even and Odd. Each player has a penny and must secretly turn the penny to heads or tails. The players then reveal their choices simultaneously. If the pennies match, then Even wins and keeps both pennies. If the pennies do not match, then Odd wins and keeps both pennies.

<span class="mw-page-title-main">Solution concept</span> Formal rule for predicting how a game will be played

In game theory, a solution concept is a formal rule for predicting how a game will be played. These predictions are called "solutions", and describe which strategies will be adopted by players and, therefore, the result of the game. The most commonly used solution concepts are equilibrium concepts, most famously Nash equilibrium.

In game theory, a Perfect Bayesian Equilibrium (PBE) is a solution with Bayesian probability to a turn-based game with incomplete information. More specifically, it is an equilibrium concept that uses Bayesian updating to describe player behavior in dynamic games with incomplete information. Perfect Bayesian equilibria are used to solve the outcome of games where players take turns but are unsure of the "type" of their opponent, which occurs when players don't know their opponent's preference between individual moves. A classic example of a dynamic game with types is a war game where the player is unsure whether their opponent is a risk-taking "hawk" type or a pacifistic "dove" type. Perfect Bayesian Equilibria are a refinement of Bayesian Nash equilibrium (BNE), which is a solution concept with Bayesian probability for non-turn-based games.

The Stackelberg leadership model is a strategic game in economics in which the leader firm moves first and then the follower firms move sequentially. It is named after the German economist Heinrich Freiherr von Stackelberg who published Marktform und Gleichgewicht [Market Structure and Equilibrium] in 1934, which described the model. In game theory terms, the players of this game are a leader and a follower and they compete on quantity. The Stackelberg leader is sometimes referred to as the Market Leader.

Backward induction is the process of determining a sequence of optimal choices by employing reasoning backward from the end of a problem or situation to its beginning, choice by choice. It involves examining the last point at which a decision is to be made and identifying the most optimal choice of action at that point. Using this information, one can then determine what to do at the second-to-last point of decision. This process continues backward until the best action for every possible point along the sequence is determined. Backward induction was first utilized in 1875 by Arthur Cayley, who discovered the method while attempting to solve the secretary problem.

In game theory, trembling hand perfect equilibrium is a type of refinement of a Nash equilibrium that was first proposed by Reinhard Selten. A trembling hand perfect equilibrium is an equilibrium that takes the possibility of off-the-equilibrium play into account by assuming that the players, through a "slip of the hand" or tremble, may choose unintended strategies, albeit with negligible probability.

In game theory, folk theorems are a class of theorems describing an abundance of Nash equilibrium payoff profiles in repeated games. The original Folk Theorem concerned the payoffs of all the Nash equilibria of an infinitely repeated game. This result was called the Folk Theorem because it was widely known among game theorists in the 1950s, even though no one had published it. Friedman's (1971) Theorem concerns the payoffs of certain subgame-perfect Nash equilibria (SPE) of an infinitely repeated game, and so strengthens the original Folk Theorem by using a stronger equilibrium concept: subgame-perfect Nash equilibria rather than Nash equilibria.

In game theory, a repeated game is an extensive form game that consists of a number of repetitions of some base game. The stage game is usually one of the well-studied 2-person games. Repeated games capture the idea that a player will have to take into account the impact of their current action on the future actions of other players; this impact is sometimes called their reputation. Single stage game or single shot game are names for non-repeated games.

In game theory, the purification theorem was contributed by Nobel laureate John Harsanyi in 1973. The theorem aims to justify a puzzling aspect of mixed strategy Nash equilibria: that each player is wholly indifferent amongst each of the actions he puts non-zero weight on, yet he mixes them so as to make every other player also indifferent.

In game theory, a Manipulated Nash equilibrium or MAPNASH is a refinement of subgame perfect equilibrium used in dynamic games of imperfect information. Informally, a strategy set is a MAPNASH of a game if it would be a subgame perfect equilibrium of the game if the game had perfect information. MAPNASH were first suggested by Amershi, Sadanand, and Sadanand (1988) and has been discussed in several papers since. It is a solution concept based on how players think about other players' thought processes.

In game theory, a subgame perfect equilibrium is a refinement of a Nash equilibrium used in dynamic games. A strategy profile is a subgame perfect equilibrium if it represents a Nash equilibrium of every subgame of the original game. Informally, this means that at any point in the game, the players' behavior from that point onward should represent a Nash equilibrium of the continuation game, no matter what happened before. Every finite extensive game with perfect recall has a subgame perfect equilibrium. Perfect recall is a term introduced by Harold W. Kuhn in 1953 and "equivalent to the assertion that each player is allowed by the rules of the game to remember everything he knew at previous moves and all of his choices at those moves".

Quantal response equilibrium (QRE) is a solution concept in game theory. First introduced by Richard McKelvey and Thomas Palfrey, it provides an equilibrium notion with bounded rationality. QRE is not an equilibrium refinement, and it can give significantly different results from Nash equilibrium. QRE is only defined for games with discrete strategies, although there are continuous-strategy analogues.

In game theory, an epsilon-equilibrium, or near-Nash equilibrium, is a strategy profile that approximately satisfies the condition of Nash equilibrium. In a Nash equilibrium, no player has an incentive to change his behavior. In an approximate Nash equilibrium, this requirement is weakened to allow the possibility that a player may have a small incentive to do something different. This may still be considered an adequate solution concept, assuming for example status quo bias. This solution concept may be preferred to Nash equilibrium due to being easier to compute, or alternatively due to the possibility that in games of more than 2 players, the probabilities involved in an exact Nash equilibrium need not be rational numbers.

Cooperative bargaining is a process in which two people decide how to share a surplus that they can jointly generate. In many cases, the surplus created by the two players can be shared in many ways, forcing the players to negotiate which division of payoffs to choose. Such surplus-sharing problems are faced by management and labor in the division of a firm's profit, by trade partners in the specification of the terms of trade, and more.

<span class="mw-page-title-main">Non-credible threat</span>

A non-credible threat is a term used in game theory and economics to describe a threat in a sequential game that a rational player would not actually carry out, because it would not be in his best interest to do so.

<span class="mw-page-title-main">Jean-François Mertens</span> Belgian game theorist (1946–2012)

Jean-François Mertens was a Belgian game theorist and mathematical economist.

In game theory, Mertens stability is a solution concept used to predict the outcome of a non-cooperative game. A tentative definition of stability was proposed by Elon Kohlberg and Jean-François Mertens for games with finite numbers of players and strategies. Later, Mertens proposed a stronger definition that was elaborated further by Srihari Govindan and Mertens. This solution concept is now called Mertens stability, or just stability.

The Berge equilibrium is a game theory solution concept named after the mathematician Claude Berge. It is similar to the standard Nash equilibrium, except that it aims to capture a type of altruism rather than purely non-cooperative play. Whereas a Nash equilibrium is a situation in which each player of a strategic game ensures that they personally will receive the highest payoff given other players' strategies, in a Berge equilibrium every player ensures that all other players will receive the highest payoff possible. Although Berge introduced the intuition for this equilibrium notion in 1957, it was only formally defined by Vladislav Iosifovich Zhukovskii in 1985, and it was not in widespread use until half a century after Berge originally developed it.

References

  1. Krockow, Eva M.; Colman, Andrew M.; Pulford, Briony D. (2016-01-01). "Cooperation in repeated interactions: A systematic review of Centipede game experiments, 1992–2016". European Review of Social Psychology. 27 (1): 231–282. doi:10.1080/10463283.2016.1249640. hdl: 2381/39513 . ISSN   1046-3283. S2CID   32932923.
  2. Rapoport, Amnon; Stein, William E.; Parco, James E.; Nicholas, Thomas E. (2003-05-01). "Equilibrium play and adaptive learning in a three-person centipede game". Games and Economic Behavior. 43 (2): 239–265. doi:10.1016/S0899-8256(03)00009-5. ISSN   0899-8256. S2CID   1823952.
  3. "Altruism and Ambiguity in the Centipede game". osf.io. Retrieved 2022-10-10.
  4. Pulford, Briony D.; Colman, Andrew M.; Lawrence, Catherine L.; Krockow, Eva M. (April 2017). "Reasons for cooperating in repeated interactions: Social value orientations, fuzzy traces, reciprocity, and activity bias". Decision. 4 (2): 102–122. doi:10.1037/dec0000057. ISSN   2325-9973. S2CID   32870881.
  5. Gamba, Astrid; Regner, Tobias (2019-11-01). "Preferences-dependent learning in the centipede game: The persistence of mistrust". European Economic Review. 120: 103316. doi:10.1016/j.euroecorev.2019.103316. ISSN   0014-2921. S2CID   204429302.
  6. McKelvey, Richard D.; Palfrey, Thomas R. (1995-07-01). "Quantal Response Equilibria for Normal Form Games". Games and Economic Behavior. 10 (1): 6–38. doi:10.1006/game.1995.1023. ISSN   0899-8256.
  7. García-Pola, Bernardo; Iriberri, Nagore; Kovářík, Jaromír (2020-03-01). "Non-equilibrium play in centipede games". Games and Economic Behavior. 120: 391–433. doi:10.1016/j.geb.2020.01.007. ISSN   0899-8256. S2CID   44043202.
  8. Krockow, Eva M.; Colman, Andrew M.; Pulford, Briony D. (October 2016). "Exploring cooperation and competition in the Centipede game through verbal protocol analysis: Exploring cooperation". European Journal of Social Psychology. 46 (6): 746–761. doi:10.1002/ejsp.2226. hdl: 2381/37754 .