Strategy-stealing argument

Last updated

In combinatorial game theory, the strategy-stealing argument is a general argument that shows, for many two-player games, that the second player cannot have a guaranteed winning strategy. The strategy-stealing argument applies to any symmetric game (one in which either player has the same set of available moves with the same results, so that the first player can "use" the second player's strategy) in which an extra move can never be a disadvantage. A key property of a strategy-stealing argument is that it proves that the first player can win (or possibly draw) the game without actually constructing such a strategy. So, although it might prove the existence of a winning strategy, the proof gives no information about what that strategy is.

Contents

The argument works by obtaining a contradiction. A winning strategy is assumed to exist for the second player, who is using it. But then, roughly speaking, after making an arbitrary first move – which by the conditions above is not a disadvantage – the first player may then also play according to this winning strategy. The result is that both players are guaranteed to win – which is absurd, thus contradicting the assumption that such a strategy exists.

Strategy-stealing was invented by John Nash in the 1940s to show that the game of hex is always a first-player win, as ties are not possible in this game. [1] However, Nash did not publish this method, and József Beck credits its first publication to Alfred W. Hales and Robert I. Jewett, in the 1963 paper on tic-tac-toe in which they also proved the Hales–Jewett theorem. [1] [2] Other examples of games to which the argument applies include the m,n,k-games such as gomoku. In the game of Chomp strategy stealing shows that the first player has a winning strategy in any rectangular board (other than 1x1). In the game of Sylver coinage, strategy stealing has been used to show that the first player can win in certain positions called "enders". [3] In all of these examples the proof reveals nothing about the actual strategy.

Example

A strategy-stealing argument can be used on the example of the game of tic-tac-toe, for a board and winning rows of any size. [1] [2] Suppose that the second player (P2) is using a strategy S which guarantees a win. The first player (P1) places an X in an arbitrary position. P2 responds by placing an O according to S. But if P1 ignores the first random X, P1 is now in the same situation as P2 on P2's first move: a single enemy piece on the board. P1 may therefore make a move according to S – that is, unless S calls for another X to be placed where the ignored X is already placed. But in this case, P1 may simply place an X in some other random position on the board, the net effect of which will be that one X is in the position demanded by S, while another is in a random position, and becomes the new ignored piece, leaving the situation as before. Continuing in this way, S is, by hypothesis, guaranteed to produce a winning position (with an additional ignored X of no consequence). But then P2 has lost – contradicting the supposition that P2 had a guaranteed winning strategy. Such a winning strategy for P2, therefore, does not exist, and tic-tac-toe is either a forced win for P1 or a tie. (Further analysis shows it is in fact a tie.)

The same proof holds for any strong positional game.

Chess

Philidor, 1777
abcdefgh
8
Chessboard480.svg
Chess qlt45.svg
Chess klt45.svg
Chess rdt45.svg
Chess kdt45.svg
8
77
66
55
44
33
22
11
abcdefgh
Black is in zugzwang, since they must move their rook away from their king.

There is a class of chess positions called Zugzwang in which the player obligated to move would prefer to "pass" if this were allowed. Because of this, the strategy-stealing argument cannot be applied to chess. [4] It is not currently known whether White or Black can force a win with optimal play, or if both players can force a draw. However, virtually all students of chess consider White's first move to be an advantage and statistics from modern high-level games have White's winning percentage about 10%[ citation needed ] higher than Black's.

Go

In Go passing is allowed. When the starting position is symmetrical (empty board, neither player has any points), this means that the first player could steal the second player's winning strategy simply by giving up the first move. Since the 1930s, however, [5] the second player is typically awarded some compensation points, which makes the starting position asymmetrical, and the strategy-stealing argument will no longer work.

An elementary strategy in the game is "mirror go", where the second player performs moves which are diagonally opposite those of this opponent. This approach may be defeated using ladder tactics, ko fights, or successfully competing for control of the board's central point.

Constructivity

The strategy-stealing argument shows that the second player cannot win, by means of deriving a contradiction from any hypothetical winning strategy for the second player. The argument is commonly employed in games where there can be no draw, by means of the law of the excluded middle. However, it does not provide an explicit strategy for the first player, and because of this it has been called non-constructive. [4] This raises the question of how to actually compute a winning strategy.

For games with a finite number of reachable positions, such as chomp, a winning strategy can be found by exhaustive search. [6] However, this might be impractical if the number of positions is large.

In 2019, Greg Bodwin and Ofer Grossman proved that the problem of finding a winning strategy is PSPACE-hard in two kinds of games in which strategy-stealing arguments were used: the minimum poset game and the symmetric Maker-Maker game. [7]

Related Research Articles

<span class="mw-page-title-main">Tic-tac-toe</span> Paper-and-pencil game for two players

Tic-tac-toe, noughts and crosses, or Xs and Os is a paper-and-pencil game for two players who take turns marking the spaces in a three-by-three grid with X or O. The player who succeeds in placing three of their marks in a horizontal, vertical, or diagonal row is the winner. It is a solved game, with a forced draw assuming best play from both players.

Three men's morris is an abstract strategy game played on a three by three board that is similar to tic-tac-toe. It is also related to six men's morris and nine men's morris. A player wins by forming a mill, that is, three of their own pieces in a row.

A solved game is a game whose outcome can be correctly predicted from any position, assuming that both players play perfectly. This concept is usually applied to abstract strategy games, and especially to games with full information and no element of chance; solving such a game may use combinatorial game theory and/or computer assistance.

In the context of combinatorial game theory, which typically studies sequential games with perfect information, a game tree is a graph representing all possible game states within such a game. Such games include well-known ones such as chess, checkers, Go, and tic-tac-toe. This can be used to measure the complexity of a game, as it represents all the possible ways a game can pan out. Due to the large game trees of complex games such as chess, algorithms that are designed to play this class of games will use partial game trees, which makes computation feasible on modern computers. Various methods exist to solve game trees. If a complete game tree can be generated, a deterministic algorithm, such as backward induction or retrograde analysis can be used. Randomized algorithms and minmax algorithms such as MCTS can be used in cases where a complete game tree is not feasible.

<i>m</i>,<i>n</i>,<i>k</i>-game Abstract board game for two players

An m,n,k-game is an abstract board game in which two players take turns in placing a stone of their color on an m-by-n board, the winner being the player who first gets k stones of their own color in a row, horizontally, vertically, or diagonally. Thus, tic-tac-toe is the 3,3,3-game and free-style gomoku is the 15,15,5-game. An m,n,k-game is also called a k-in-a-row game on an m-by-n board.

<span class="mw-page-title-main">3D tic-tac-toe</span> 1978 video game

3D tic-tac-toe, also known by the trade name Qubic, is an abstract strategy board game, generally for two players. It is similar in concept to traditional tic-tac-toe but is played in a cubical array of cells, usually 4×4×4. Players take turns placing their markers in blank cells in the array. The first player to achieve four of their own markers in a row wins. The winning row can be horizontal, vertical, or diagonal on a single board as in regular tic-tac-toe, or vertically in a column, or a diagonal line through four boards.

In mathematics, the Hales–Jewett theorem is a fundamental combinatorial result of Ramsey theory named after Alfred W. Hales and Robert I. Jewett, concerning the degree to which high-dimensional objects must necessarily exhibit some combinatorial structure; it is impossible for such objects to be "completely random".

<span class="mw-page-title-main">Toss Across</span> Game similar to tic-tac-toe

Toss Across is a game first introduced in 1969 by the now defunct Ideal Toy Company. The game was designed by Marvin Glass and Associates and created by Hank Kramer, Larry Reiner and Walter Moe, and is now distributed by Mattel. It is a game in which participants play tic-tac-toe by lobbing small beanbags at targets in an attempt to change the targets to their desired letter. As in traditional tic-tac-toe, the first player to get three of their letters in a row wins the game. There are other similar games to Toss Across known under different names, such as Tic Tac Throw.

<span class="mw-page-title-main">Score four</span> Board game

Score four is a "three dimensional" abstract strategy game, similar to Connect Four. It was first sold under the name "Score Four" by Funtastic in 1968. Lakeside issued 4 different versions in the 1970s. Later Hasbro sold the game as "Connect Four Advanced" in the UK.

Harary's generalized tic-tac-toe or animal tic-tac-toe is a generalization of the game tic-tac-toe, defining the game as a race to complete a particular polyomino on a square grid of varying size, rather than being limited to "in a row" constructions. It was devised by Frank Harary in March 1977, and is a broader definition than that of an m,n,k-game.

<span class="mw-page-title-main">First-player and second-player win</span>

In combinatorial game theory, a two-player deterministic perfect information turn-based game is a first-player-win if with perfect play the first player to move can always force a win. Similarly, a game is second-player-win if with perfect play the second player to move can always force a win. With perfect play, if neither side can force a win, the game is a draw.

A positional game is a kind of a combinatorial game for two players. It is described by:

<span class="mw-page-title-main">Ultimate tic-tac-toe</span> Variant of tic-tac-toe game

Ultimate tic-tac-toe is a board game composed of nine tic-tac-toe boards arranged in a 3 × 3 grid. Players take turns playing on the smaller tic-tac-toe boards until one of them wins on the larger board. Compared to traditional tic-tac-toe, strategy in this game is conceptually more difficult and has proven more challenging for computers.

<span class="mw-page-title-main">Notakto</span> Pen and paper game

Notakto is a tic-tac-toe variant, also known as neutral or impartial tic-tac-toe. The game is a combination of the games tic-tac-toe and Nim, played across one or several boards with both of the players playing the same piece. The game ends when all the boards contain a three-in-a-row of Xs, at which point the player to have made the last move loses the game. However, in this game, unlike tic-tac-toe, there will always be a player who wins any game of Notakto.

<span class="mw-page-title-main">Wild tic-tac-toe</span>

Wild tic-tac-toe is an impartial game similar to tic-tac-toe. However, in this game players can choose to place either X or O on each move. This game can also be played in its misere form where if a player creates a three-in-a-row of marks, that player loses the game.

<span class="mw-page-title-main">Tic-tac-toe variants</span> Overview about tic-tac-toe variants

Tic-tac-toe is an instance of an m,n,k-game, where two players alternate taking turns on an m×n board until one of them gets k in a row. Harary's generalized tic-tac-toe is an even broader generalization. The game can also be generalized as a nd game. The game can be generalised even further from the above variants by playing on an arbitrary hypergraph where rows are hyperedges and cells are vertices.

A nd game (or nk game) is a generalization of the combinatorial game tic-tac-toe to higher dimensions. It is a game played on a nd hypercube with 2 players. If one player creates a line of length n of their symbol (X or O) they win the game. However, if all nd spaces are filled then the game is a draw. Tic-tac-toe is the game where n equals 3 and d equals 2 (3, 2). Qubic is the (4, 3) game. The (n > 0, 0) or (1, 1) games are trivially won by the first player as there is only one space (n0 = 1 and 11 = 1). A game with d = 1 and n > 1 cannot be won if both players are playing well as an opponent's piece will block the one-dimensional line.

A strong positional game is a kind of positional game. Like most positional games, it is described by its set of positions and its family of winning-sets. It is played by two players, called First and Second, who alternately take previously untaken positions.

In a positional game, a pairing strategy is a strategy that a player can use to guarantee victory, or at least force a draw. It is based on dividing the positions on the game-board into disjoint pairs. Whenever the opponent picks a position in a pair, the player picks the other position in the same pair.

Combinatorial Games: Tic-Tac-Toe Theory is a monograph on the mathematics of tic-tac-toe and other positional games, written by József Beck. It was published in 2008 by the Cambridge University Press as volume 114 of their Encyclopedia of Mathematics and its Applications book series (ISBN 978-0-521-46100-9).

References

  1. 1 2 3 Beck, József (2008), Combinatorial Games: Tic-Tac-Toe Theory, Encyclopedia of Mathematics and its Applications, vol. 114, Cambridge: Cambridge University Press, p.65, 74, doi:10.1017/CBO9780511735202, ISBN   9780511735202, MR   2402857 .
  2. 1 2 Hales, A. W.; Jewett, R. I. (1963), "Regularity and positional games", Transactions of the American Mathematical Society , 106 (2): 222–229, doi: 10.2307/1993764 , JSTOR   1993764, MR   0143712 .
  3. Sicherman, George (2002), "Theory and Practice of Sylver Coinage" (PDF), Integers, 2, G2
  4. 1 2 Bishop, J. M.; Nasuto, S. J.; Tanay, T.; Roesch, E. B.; Spencer, M. C. (2016), "HeX and the single anthill: Playing games with Aunt Hillary", in Müller, Vincent C. (ed.), Fundamental Issues of Artificial Intelligence (PDF), Synthese Library, vol. 376, Springer, pp. 369–390, doi:10.1007/978-3-319-26485-1_22, ISBN   978-3-319-26483-7 . See in particular Section 22.2.2.2, The Strategy-Stealing Argument, p. 376.
  5. Fairbairn, John, History of Komi , retrieved 2010-04-09
  6. rjlipton (2013-10-02). "Stealing Strategies". Gödel's Lost Letter and P=NP. Retrieved 2019-11-30.
  7. Bodwin, Greg; Grossman, Ofer (2019-11-15). "Strategy-Stealing is Non-Constructive". arXiv: 1911.06907 [cs.DS].