Charcot Plate

Last updated

The Charcot Plate was a fragment of the Phoenix Plate. [1] The subduction of the Charcot Plate, beneath West Antarctica, stopped before 83 Ma, and became fused onto the Antarctic Peninsula. [2] Researchers have suggested that there are remnants of the western part of the Charcot Plate in the Bellingshausen Sea. [2]

Related Research Articles

<span class="mw-page-title-main">Pacific-Antarctic Ridge</span> Tectonic plate boundary in the South Pacific Ocean

The Pacific-Antarctic Ridge is a divergent tectonic plate boundary located on the seafloor of the South Pacific Ocean, separating the Pacific Plate from the Antarctic Plate. It is regarded as the southern section of the East Pacific Rise in some usages, generally south of the Challenger Fracture Zone and stretching to the Macquarie Triple Junction south of New Zealand.

<span class="mw-page-title-main">Antarctic Plate</span> Major tectonic plate containing Antarctica and the surrounding ocean floor

The Antarctic Plate is a tectonic plate containing the continent of Antarctica, the Kerguelen Plateau, and some remote islands in the Southern Ocean and other surrounding oceans. After breakup from Gondwana, the Antarctic plate began moving the continent of Antarctica south to its present isolated location, causing the continent to develop a much colder climate. The Antarctic Plate is bounded almost entirely by extensional mid-ocean ridge systems. The adjoining plates are the Nazca Plate, the South American Plate, the African Plate, the Somali Plate, the Indo-Australian Plate, the Pacific Plate, and, across a transform boundary, the Scotia Plate.

<span class="mw-page-title-main">Scotia Plate</span> Minor oceanic tectonic plate between the Antarctic and South American plates

The Scotia Plate is a minor tectonic plate on the edge of the South Atlantic and Southern oceans. Thought to have formed during the early Eocene with the opening of the Drake Passage that separates Antarctica and South America, it is a minor plate whose movement is largely controlled by the two major plates that surround it: the Antarctic Plate and the South American Plate. The Scotia Plate takes its name from the steam yacht Scotia of the Scottish National Antarctic Expedition (1902–04), the expedition that made the first bathymetric study of the region.

Peacock Sound is an ice-filled sound, 216 kilometres (134 mi) long and 64 km (40 mi) wide, separating Thurston Island from the Eights Coast of Ellsworth Land in Antarctica. The sound is occupied by the western part of the Abbot Ice Shelf, and is therefore not navigable by ships.

<span class="mw-page-title-main">West Antarctic Rift System</span> Series of rift valleys between East and West Antarctica

The West Antarctic Rift System is a series of rift valleys between East and West Antarctica. It encompasses the Ross Embayment, the Ross Sea, the area under the Ross Ice Shelf and a part of Marie Byrd Land in West Antarctica, reaching to the base of the Antarctic Peninsula. It has an estimated length of 3,000 km (1,900 mi) and a width of approximately 700 km (430 mi). Its evolution is due to lithospheric thinning of an area of Antarctica that resulted in the demarcation of East and West Antarctica. The scale and evolution of the rift system has been compared to that of the Basin and Range Province of the Western United States.

<span class="mw-page-title-main">Phoenix Plate</span> Tectonic plate that existed during the early Paleozoic through late Cenozoic time

The Phoenix Plate was a tectonic plate that existed during the early Paleozoic through late Cenozoic time. It formed a triple junction with the Izanagi and Farallon plates in the Panthalassa Ocean as early as 410 million years ago, during which time the Phoenix Plate was subducting under eastern Gondwana.

<span class="mw-page-title-main">Back-arc basin</span> Submarine features associated with island arcs and subduction zones

A back-arc basin is a type of geologic basin, found at some convergent plate boundaries. Presently all back-arc basins are submarine features associated with island arcs and subduction zones, with many found in the western Pacific Ocean. Most of them result from tensional forces, caused by a process known as oceanic trench rollback, where a subduction zone moves towards the subducting plate. Back-arc basins were initially an unexpected phenomenon in plate tectonics, as convergent boundaries were expected to universally be zones of compression. However, in 1970, Dan Karig published a model of back-arc basins consistent with plate tectonics.

The Bellingshausen Plate was an ancient tectonic plate that fused onto the Antarctic Plate. It is named after Fabian Gottlieb von Bellingshausen, the Russian discoverer of Antarctica.

<span class="mw-page-title-main">Southeast Indian Ridge</span> Mid-ocean ridge in the southern Indian Ocean

The Southeast Indian Ridge (SEIR) is a mid-ocean ridge in the southern Indian Ocean. A divergent tectonic plate boundary stretching almost 6,000 km (3,700 mi) between the Rodrigues Triple Junction in the Indian Ocean and the Macquarie Triple Junction in the Pacific Ocean, the SEIR forms the plate boundary between the Australian and Antarctic plates since the Oligocene (anomaly 13).

<span class="mw-page-title-main">Macquarie Triple Junction</span> Place where the Indo-Australian Plate, Pacific Plate, and Antarctic Plate meet

The Macquarie Triple Junction is a geologically active tectonic boundary located at 61°30′S161°0′E at which the historic Indo-Australian Plate, Pacific Plate, and Antarctic Plate collide and interact. The term Triple Junction is given to particular tectonic boundaries at which three separate tectonic plates meet at a specific, singular location. The Macquarie Triple Junction is located on the seafloor of the southern region of the Pacific Ocean, just south of New Zealand. This tectonic boundary was named in respect to the nearby Macquarie Island, which is located southeast of New Zealand.

<span class="mw-page-title-main">Juan Fernández Plate</span> Very small tectonic plate in the southern Pacific Ocean

The Juan Fernandez Plate is a small tectonic plate (microplate) in the Pacific Ocean. With a surface area of approximately 105 km2, the microplate is located between 32° and 35°S and 109° and 112°W. The plate is located at a triple junction between the Antarctic Plate, the Nazca Plate, and the Pacific Plate. Approximately 2,000 km to the west of South America, it is, on average, 3,000 meters deep with its shallowest point coming to approximately 1,600 meters, and its deepest point reaching 4,400 meters.

The South Bismarck Plate is a small tectonic plate located mainly in the southern Bismarck Sea. The eastern part of New Guinea and the island of New Britain are on this plate. It is associated with high earthquake and volcanic activity as part of the New Britain subduction zone within the Pacific Ring of Fire.

The Antarctic Peninsula, roughly 1,000 kilometres (650 mi) south of South America, is the northernmost portion of the continent of Antarctica. Like the associated Andes, the Antarctic Peninsula is an excellent example of ocean-continent collision resulting in subduction. The peninsula has experienced continuous subduction for over 200 million years, but changes in continental configurations during the amalgamation and breakup of continents have changed the orientation of the peninsula itself, as well as the underlying volcanic rocks associated with the subduction zone.

<span class="mw-page-title-main">Lwandle Plate</span> Mainly oceanic tectonic microplate off the southeast coast of Africa

The Lwandle Plate is one of three tectonic microplates, along with the Rovuma Plate and Victoria Plate, that make up the African Plate with the Somali Plate and the Nubian Plate. Its discovery is very recent, so the velocity of the plate is neither well known nor well understood. Many experiments are ongoing to quantify this. The Lwandle Plate lies between 30°E and 50°E, sharing a boundary with the Nubian, Somali, and Antarctic Plates.

<span class="mw-page-title-main">Agulhas Plateau</span>

The Agulhas Plateau is an oceanic plateau located in the south-western Indian Ocean about 500 km (310 mi) south of South Africa. It is a remainder of a large igneous province (LIP), the Southeast African LIP, that formed 140 to 95 million years ago (Ma) at or near the triple junction where Gondwana broke-up into Antarctica, South America, and Africa. The plateau formed 100 to 94 Ma together with Northeast Georgia Rise and Maud Rise when the region passed over the Bouvet hotspot.

<span class="mw-page-title-main">Northeast Georgia Rise</span> Oceanic plateau in the South Atlantic Ocean

The Northeast Georgia Rise is an oceanic plateau located in the South Atlantic Ocean northeast of South Georgia Island and west of the Falkland Plateau.

<span class="mw-page-title-main">Bruce P. Luyendyk</span> American geophysicist and oceanographer (born 1943)

Bruce Peter Luyendyk is an American geophysicist and oceanographer, currently professor emeritus of marine geophysics at the University of California, Santa Barbara. His work spans marine geology of the major ocean basins, the tectonics of southern California, marine hydrocarbon seeps, and the tectonics and paleoclimate of Antarctica. His research includes tectonic rotations of the California Transverse Ranges, participation in the discovery of deep-sea hydrothermal vents, quantitative studies of marine hydrocarbon seeps, and geologic exploration of the Ford Ranges in Marie Byrd Land, Antarctica.

Joann Stock is a professor at California Institute of Technology known for her research into plate tectonics, particularly on changes in plate boundaries over geological time.

<span class="mw-page-title-main">Hudson Mountains</span> Mountain range in Antarctica

The Hudson Mountains are a mountain range in western Ellsworth Land just east of Pine Island Bay at the Walgreen Coast of the Amundsen Sea. They are of volcanic origin, consisting of low scattered mountains and nunataks that protrude through the West Antarctic Ice Sheet. The Hudson Mountains are bounded on the north by Cosgrove Ice Shelf and on the south by Pine Island Glacier. The mountains were volcanically active during the Miocene and Pliocene, but there is evidence for an eruption about two millennia ago and uncertain indications of activity in the 20th century.

References

  1. Eagles G, Gohl K, Larter RD (2004-07-10). "High-resolution animated tectonic reconstruction of the South Pacific and West Antarctic Margin" (PDF). Geochem. Geophys. Geosyst. 5 (7). Q07002. Bibcode:2004GGG.....5.7002E. doi: 10.1029/2003GC000657 .
  2. 1 2 Larter RD, Cunningham AP, Barker PF, Gohl K, Nitsche FO (2002-12-13). "Tectonic evolution of the Pacific margin of Antarctica, 1, Late Cretaceous tectonic reconstructions" (PDF). J. Geophys. Res. 107 (B12): 2345. Bibcode:2002JGRB..107.2345L. doi: 10.1029/2000JB000052 .