Cholesteric liquid crystal

Last updated
The image shows a rotation of the director about 180deg in a cholesteric phase. The corresponding distance is the half-pitch, p/2. Cholesterinisch.png
The image shows a rotation of the director about 180° in a cholesteric phase. The corresponding distance is the half-pitch, p/2.

A cholesteric liquid-crystal display (ChLCD) is a display containing a liquid crystal with a helical structure and which is therefore chiral. Cholesteric liquid crystals are also known as chiral nematic liquid crystals . They organize in layers with no positional ordering within layers, but a director axis which varies with layers. The variation of the director axis tends to be periodic in nature. The period of this variation (the distance over which a full rotation of 360° is completed) is known as the pitch, p. This pitch determines the wavelength of light which is reflected (Bragg Reflection).

The technology is characterized by stable states i.e. focal conic state (dark state) and planar state (bright state). Displays based on this technology are called “bistable” and don’t need any power to maintain the information (zero power). Because of the reflective nature of the ChLCD, these displays can be perfectly read under sunlight conditions.

Examples of compounds known to form cholesteric phases are hydroxypropyl cellulose and cholesteryl benzoate.

Some companies, such as Chiral Photonics, have begun to explore CLCs as the basis for photonic devices.

A US company, Kent Displays, has developed "no power" Liquid Crystal Displays using Polymer Stabilized Cholesteric Liquid Crystals: these are known as ChLCD screens. [1] A drawback of ChLCD screens is their slow refresh rate, especially at low temperatures. [2] [3] In 2009, Kent demonstrated the use of a ChLCD to cover the entire surface of a mobile phone, allowing it to change colours, and keep that colour even when power is cut off. [4] [5]

The Industrial Technology Research Institute has developed a flexible ePaper called i2R based on ChLCD technology. ITRI

The German company BMG MIS (formerly AEG MIS) has developed “Geameleon [6] ”- ChLCDs full color and monochrome in various sizes and resolutions. These ChLCDs can be used in extremely wide temperature applications i.e. for outdoor application. Various update versions can be applied to achieve a reasonable update time even at very low temperatures. Because of its very low power consumption, this technology is highly preferred to be used in self-sustaining applications (solar power applications).

Related Research Articles

<span class="mw-page-title-main">Liquid-crystal display</span> Display that uses the light-modulating properties of liquid crystals

A liquid-crystal display (LCD) is a flat-panel display or other electronically modulated optical device that uses the light-modulating properties of liquid crystals combined with polarizers. Liquid crystals do not emit light directly, instead using a backlight or reflector to produce images in color or monochrome. LCDs are available to display arbitrary images or fixed images with low information content, which can be displayed or hidden. For instance: preset words, digits, and seven-segment displays, as in a digital clock, are all good examples of devices with these displays. They use the same basic technology, except that arbitrary images are made from a matrix of small pixels, while other displays have larger elements. LCDs can either be normally on (positive) or off (negative), depending on the polarizer arrangement. For example, a character positive LCD with a backlight will have black lettering on a background that is the color of the backlight, and a character negative LCD will have a black background with the letters being of the same color as the backlight. Optical filters are added to white on blue LCDs to give them their characteristic appearance.

<span class="mw-page-title-main">Liquid crystal</span> State of matter with properties of both conventional liquids and crystals

Liquid crystal (LC) is a state of matter whose properties are between those of conventional liquids and those of solid crystals. For example, a liquid crystal may flow like a liquid, but its molecules may be oriented in a crystal-like way. There are many types of LC phases, which can be distinguished by their optical properties. The contrasting textures arise due to molecules within one area of material ("domain") being oriented in the same direction but different areas having different orientations. LC materials may not always be in a LC state of matter.

A thin-film transistor (TFT) is a special type of field-effect transistor (FET) where the transistor is thin relative to the plane of the device. TFTs are grown on a supporting substrate. A common substrate is glass, because the traditional application of TFTs is in liquid-crystal displays (LCDs). This differs from the conventional bulk metal oxide field effect transistor (MOSFET), where the semiconductor material typically is the substrate, such as a silicon wafer.

<span class="mw-page-title-main">Flat-panel display</span> Electronic display technology

A flat-panel display (FPD) is an electronic display used to display visual content such as text or images. It is present in consumer, medical, transportation, and industrial equipment.

<span class="mw-page-title-main">LCD projector</span> Type of video projector

An LCD projector is a type of video projector for displaying video, images or computer data on a screen or other flat surface. It is a modern equivalent of the slide projector or overhead projector. To display images, LCD projectors typically send light from a metal-halide lamp through a prism or series of dichroic filters that separates light to three polysilicon panels – one each for the red, green and blue components of the video signal. As polarized light passes through the panels, individual pixels can be opened to allow light to pass or closed to block the light. The combination of open and closed pixels can produce a wide range of colors and shades in the projected image.

Liquid crystal on silicon is a miniaturized reflective active-matrix liquid-crystal display or "microdisplay" using a liquid crystal layer on top of a silicon backplane. It is also referred to as a spatial light modulator. LCoS was initially developed for projection televisions but is now used for wavelength selective switching, structured illumination, near-eye displays and optical pulse shaping. By way of comparison, some LCD projectors use transmissive LCD, allowing light to pass through the liquid crystal.

A thin-film-transistor liquid-crystal display is a variant of a liquid-crystal display that uses thin-film-transistor technology to improve image qualities such as addressability and contrast. A TFT LCD is an active matrix LCD, in contrast to passive matrix LCDs or simple, direct-driven LCDs with a few segments.

James Lee Fergason was an American inventor and business entrepreneur. A member of the National Inventors Hall of Fame, Fergason is best known for his work on an improved Liquid Crystal Display, or LCD. He held over one hundred U.S. patents at the time of his death.

<span class="mw-page-title-main">Twisted nematic field effect</span> Type of thin-film-transistor liquid-crystal display technology

The twisted nematic effect (TN-effect) was a main technology breakthrough that made LCDs practical. Unlike earlier displays, TN-cells did not require a current to flow for operation and used low operating voltages suitable for use with batteries. The introduction of TN-effect displays led to their rapid expansion in the display field, quickly pushing out other common technologies like monolithic LEDs and CRTs for most electronics. By the 1990s, TN-effect LCDs were largely universal in portable electronics, although since then, many applications of LCDs adopted alternatives to the TN-effect such as in-plane switching (IPS) or vertical alignment (VA).

<span class="mw-page-title-main">Martin Schadt</span> Swiss physicist and inventor (born 1938)

Martin Schadt is a Swiss physicist and inventor.

<span class="mw-page-title-main">Large-screen television technology</span> Technology rapidly developed in the late 1990s and 2000s

Large-screen television technology developed rapidly in the late 1990s and 2000s. Prior to the development of thin-screen technologies, rear-projection television was standard for larger displays, and jumbotron, a non-projection video display technology, was used at stadiums and concerts. Various thin-screen technologies are being developed, but only liquid crystal display (LCD), plasma display (PDP) and Digital Light Processing (DLP) have been publicly released. Recent technologies like organic light-emitting diode (OLED) as well as not-yet-released technologies like surface-conduction electron-emitter display (SED) or field emission display (FED) are in development to replace earlier flat-screen technologies in picture quality.

Chiral Photonics, Inc. is a photonics company based in Pine Brook, New Jersey, founded in 1999. The company is developing a new class of optical devices based on twisting glass optical fibers. These in-fiber devices aim to displace discrete optical elements such as lasers, filters and sensors. They benefit from optical fiber’s transmission efficiency, robustness and ease of integration.

A blue phase mode LCD is a liquid crystal display (LCD) technology that uses highly twisted cholesteric phases in a blue phase. It was first proposed in 2007 to obtain a better display of moving images with, for example, frame rates of 100–120 Hz to improve the temporal response of LCDs. This operational mode for LCDs also does not require anisotropic alignment layers and thus theoretically simplifies the LCD manufacturing process.

There are various classifications of the electro-optical modes of liquid crystal displays (LCDs).

Ferroelectric Liquid Crystal Display (FLCD) is a display technology based on the ferroelectric properties of chiral smectic liquid crystals as proposed in 1980 by Clark and Lagerwall. Reportedly discovered in 1975, several companies pursued the development of FLCD technologies, notably Canon and Central Research Laboratories (CRL), along with others including Seiko, Sharp, Mitsubishi and GEC. Canon and CRL pursued different technological approaches with regard to the switching of display cells, these providing the individual pixels or subpixels, and the production of intermediate pixel intensities between full transparency and full opacity, these differing approaches being adopted by other companies seeking to develop FLCD products.

IPS is a screen technology for liquid-crystal displays (LCDs). In IPS, a layer of liquid crystals is sandwiched between two glass surfaces. The liquid crystal molecules are aligned parallel to those surfaces in predetermined directions (in-plane). The molecules are reoriented by an applied electric field, whilst remaining essentially parallel to the surfaces to produce an image. It was designed to solve the strong viewing angle dependence and low-quality color reproduction of the twisted nematic field effect (TN) matrix LCDs prevalent in the late 1980s.

A liquid-crystal laser is a laser that uses a liquid crystal as the resonator cavity, allowing selection of emission wavelength and polarization from the active laser medium. The lasing medium is usually a dye doped into the liquid crystal. Liquid-crystal lasers are comparable in size to diode lasers, but provide the continuous wide spectrum tunability of dye lasers while maintaining a large coherence area. The tuning range is typically several tens of nanometers. Self-organization at micrometer scales reduces manufacturing complexity compared to using layered photonic metamaterials. Operation may be either in continuous wave mode or in pulsed mode.

<span class="mw-page-title-main">Temperature sensitive glass</span>

Temperature sensitive glass is a glass material that reacts to ambient temperatures radiated off of other surfaces, e.g. hands or water. The liquid crystals beneath the glass surface impact color upon temperature. There are three main phases of these crystals: nematic, smectic, and chiral.

Olusegun Falana v. Kent State University and Alexander J. Seed, 669 F.3d 1349, was a notable case precedent in the United States patent law decided by United States Court of Appeals for the Federal Circuit in 2012 that deals with the questions of inventorship and attorney’s fee shifting in patent lawsuits.

Silvia Vignolini is an Italian physicist who is Professor of Chemistry and Bio-materials in the Yusuf Hamied Department of Chemistry at the University of Cambridge. Her research investigates natural photonics structures, the self-assembly of cellulose and light propagation through complex structures. She was awarded the KINGFA young investigator award by the American Chemical Society and the Gibson-Fawcett Award in 2018.

References

  1. "How Liquid Crystal Displays Work in an eWriter". NSF - National Science Foundation. Retrieved 25 November 2022.
  2. Knoll, Peter M. (1995). Displays – Einführung in die Technik aktiver und passiver Anzeigen. Hüthig. ISBN   978-3778513576.
  3. Bahadur, Birenda (1992). Liquid Crystals Applications and Uses, Vol. 3. World Scientific Publishing. ISBN   978-9810229528.
  4. "Electronic Skin from Kent Displays". Archived from the original on 2014-04-20. Retrieved 2014-05-14.
  5. Tetsuo Nozawa. "[SID] Entire Surface of Handset becomes LCD Display". Nikkei Tech-On. Retrieved 2014-05-14.
  6. "Geameleon" (PDF). Retrieved 2014-05-14.