Educational software

Last updated

Educational software is a term used for any computer software that is made for an educational purpose. It encompasses different ranges from language learning software to classroom management software to reference software. The purpose of all this software is to make some part of education more effective and efficient.

Contents

History

1946s–1970s

The use of computer hardware and software in education and training dates to the early 1940s, when American researchers developed flight simulators which used analog computers to generate simulated onboard instrument data. One such system was the type19 synthetic radar trainer, built in 1943. From these early attempts in the WWII era through the mid-1970s, educational software was directly tied to the hardware, on which it ran. Pioneering educational computer systems in this era included the PLATO system (1960), developed at the University of Illinois, and TICCIT (1969). In 1963, IBM had established a partnership with Stanford University's Institute for Mathematical Studies in the Social Sciences (IMSSS), directed by Patrick Suppes, to develop the first comprehensive CAI elementary school curriculum which was implemented on a large scale in schools in both California and Mississippi. [1] In 1967 Computer Curriculum Corporation (CCC, now Pearson Education Technologies [2] ) was formed to market to schools the materials developed through the IBM partnership. Early terminals that ran educational systems cost over $10,000, putting them out of reach of most institutions. Some programming languages from this period, p3), and LOGO (1967) can also be considered educational, as they were specifically targeted to students and novice computer users. The PLATO IV system, released in 1972, supported many features which later became standard in educational software running on home computers. Its features included bitmap graphics, primitive sound generation, and support for non-keyboard input devices, including the touchscreen.

1970s–1980s

The arrival of the personal computer, with the Altair 8800 in 1975, changed the field of software in general, with specific implications for educational software. Whereas users prior to 1975 were dependent upon university or government owned mainframe computers with timesharing, users after this shift could create and use software for computers in homes and schools, computers available for less than $2000. By the early 1980s, the availability of personal computers including the Apple II (1977), Commodore PET (1977), VIC-20 (1980), and Commodore 64 (1982) allowed for the creation of companies and nonprofits which specialized in educational software. Broderbund and The Learning Company are key companies from this period, and MECC, the Minnesota Educational Computing Consortium, a key non-profit software developer. These and other companies designed a range of titles for personal computers, with the bulk of the software initially developed for the Apple II.

Categories of educational software

Courseware

"Courseware" is a term that combines the words 'course' with 'software'. [3] It was originally used to describe additional educational material intended as kits for teachers or trainers or as tutorials for students, usually packaged for use with a computer. The term's meaning and usage has expanded and can refer to the entire course and any additional material when used in reference an online or 'computer formatted' classroom. Many companies are using the term to describe the entire "package" consisting of one 'class' or 'course' bundled together with the various lessons, tests, and other material needed. The courseware itself can be in different formats: some are only available online, such as Web pages, while others can be downloaded as PDF files or other types of document. Many forms of educational technology are now covered by the term courseware. Most leading educational companies solicit or include courseware with their training packages.

Classroom aids

Some educational software is designed for use in school classrooms. Typically such software may be projected onto a large whiteboard at the front of the class and/or run simultaneously on a network of desktop computers in a classroom. The most notable are SMART Boards that use SMART Notebook to interact with the board which allows the use of pens to digitally draw on the board. This type of software is often called classroom management software. While teachers often choose to use educational software from other categories in their IT suites (e.g. reference works, children's software), a whole category of educational software has grown up specifically intended to assist classroom teaching. Branding has been less strong in this category than in those oriented towards home users. Software titles are often very specialized and produced by various manufacturers, including many established educational book publishers.

Assessment software

With the impact of environmental damage and the need for institutions to become "paperless", [4] more educational institutions are seeking alternative ways of assessment and testing, which has always traditionally been known to use up vasts amount of paper. Assessment software refers to software with a primary purpose of assessing and testing students in a virtual environment. [5] Assessment software allows students to complete tests and examinations using a computer, usually networked. The software then scores each test transcript and outputs results for each student. Assessment software is available in various delivery methods, the most popular being self-hosted software, online software and hand-held voting systems. Proprietary software and open-source software systems are available. While technically falling into the Courseware category (see above), Skill evaluation lab is an example for Computer-based assessment software with PPA-2 (Plan, Prove, Assess) methodology to create and conduct computer based online examination. Moodle is an example of open-source software with an assessment component that is gaining popularity. QST Online [6] a dedicated complete open source exam/assessment solution is also growing in adoption. Other popular international assessment systems include Google Classroom, Blackboard Learn, EvaluNet and XT.

Reference software

Many publishers of print dictionaries and encyclopedias have been involved in the production of educational reference software since the mid-1990s. They were joined in the reference software market by both startup companies and established software publishers, most notably Microsoft.

The first commercial reference software products were reformulations of existing content into CD-ROM editions, often supplemented with new multimedia content, including compressed video and sound. More recent products made use of internet technologies, to supplement CD-ROM products, then, more recently, to replace them entirely.

Wikipedia and its offspins (such as Wiktionary) marked a new departure in educational reference software. Previously, encyclopedias and dictionaries had compiled their contents on the basis of invited and closed teams of specialists. The Wiki concept has allowed for the development of collaborative reference works through open cooperation incorporating experts and non-experts.

Custom platforms

Some manufacturers regarded normal personal computers as an inappropriate platform for learning software for younger children and produced custom child-friendly pieces of hardware instead. The hardware and software is generally combined into a single product, such as a child laptop-lookalike. The laptop keyboard for younger children follows an alphabetic order and the QWERTY order for the older ones. The most well-known example are LeapFrog products. These include imaginatively designed hand-held consoles with a variety of pluggable educational game cartridges and book-like electronic devices into which a variety of electronic books can be loaded. These products are more portable than laptop computers, but have a much more limited range of purposes, concentrating on literacy.

While mainstream operating systems are designed for general usages, and are more or less customized for education only by the application sets added to them, a variety of software manufacturers, especially Linux distributions, have sought to provide integrated platforms for specifically education.

Corporate training and tertiary education

Earlier educational software for the important corporate and tertiary education markets was designed to run on a single desktop computer (or an equivalent user device). In the years immediately following 2000, planners decided to switch to server-based applications with a high degree of standardization. This means that educational software runs primarily on servers which may be hundreds or thousands of miles from the actual user. The user only receives tiny pieces of a learning module or test, fed over the internet one by one. The server software decides on what learning material to distribute, collects results and displays progress to teaching staff. Another way of expressing this change is to say that educational software morphed into an online educational service. US Governmental endorsements and approval systems ensured the rapid switch to the new way of managing and distributing learning material. McDonald's also experimented with this via the Nintendo DS software eCrew Development Program .

See also:

Specific educational purposes

Educational software for learning Standard Chinese using Pinyin. ChineseTap.jpg
Educational software for learning Standard Chinese using Pinyin.

There are highly specific niche markets for educational software, including:

(remote control and monitoring software, filetransfer software, document camera and presenter, free tools,...)

Video games and gamification

Video games can be used to teach a user technology literacy or more about a subject. Some operating systems and mobile phones have these features. A notable example is Microsoft Solitaire, which was developed to familiarize users with the use of graphical user interfaces, especially the mouse and the drag-and-drop technique. Mavis Beacon Teaches Typing is a largely known program with built in mini-games to keep the user entertained while improving their typing skills.

Gamification is the use of game design elements in nongame contexts and has been shown to be effective in motivating behavior change. By seeing game elements as "motivational affordances," and formalizing the relationship between these elements and motivational affordances. [9] Classcraft is a software tool used by teachers that has gaming elements alongside an educational goal. [10] Tovertafel is a games console designed for remedial education and counter-acting the effects of dementia.

Effects and use of educational software

Tutor-based software

Tutor-based education software is defined as software that mimics the teacher student one on one dynamic of tutoring with software in place of a teacher. Research was conducted to see if this type of software would be effective in improving students understanding of material. It concluded that there was a positive impact which decreased the amount of time students need to study for and relative gain of understanding. [11]

Helping those with disabilities

A study was conducted to see the effects of education software on children with mild disabilities. The results were that the software was a positive impact assisting teaching these children social skills though team based learning and discussion, videos and games. [12]

Education software evaluation

There is a large market of educational software in use today. A team decided that they were to develop a system in which educational software should be evaluated as there is no current standard. It is called the Construction of the Comprehensive Evaluation of Electronic Learning Tools and Educational Software (CEELTES). [13] The software to be evaluated is graded on a point scale in four categories: the area of technical, technological and user attributes; area of criteria evaluating the information, content and operation of the software; the area of criteria evaluating the information in terms of educational use, learning and recognition; the area of criteria evaluating the psychological and pedagogical use of the software. [14]

Use in higher education

In university level computer science course, learning logic is an essential part of the curriculum. There is a proposal on using two logistical education tool FOLST and LogicChess to understand First Order Logic for university students to better understand the course material and the essentials of logistical design. [15]

Selected reports and academic articles

See also

Related Research Articles

Instructional design (ID), also known as instructional systems design and originally known as instructional systems development (ISD), is the practice of systematically designing, developing and delivering instructional materials and experiences, both digital and physical, in a consistent and reliable fashion toward an efficient, effective, appealing, engaging and inspiring acquisition of knowledge. The process consists broadly of determining the state and needs of the learner, defining the end goal of instruction, and creating some "intervention" to assist in the transition. The outcome of this instruction may be directly observable and scientifically measured or completely hidden and assumed. There are many instructional design models, but many are based on the ADDIE model with the five phases: analysis, design, development, implementation, and evaluation.

Computer-assisted language learning (CALL), British, or computer-aided instruction (CAI)/computer-aided language instruction (CALI), American, is briefly defined in a seminal work by Levy as "the search for and study of applications of the computer in language teaching and learning". CALL embraces a wide range of information and communications technology applications and approaches to teaching and learning foreign languages, from the "traditional" drill-and-practice programs that characterised CALL in the 1960s and 1970s to more recent manifestations of CALL, e.g. as used in a virtual learning environment and Web-based distance learning. It also extends to the use of corpora and concordancers, interactive whiteboards, computer-mediated communication (CMC), language learning in virtual worlds, and mobile-assisted language learning (MALL).

Educational assessment or educational evaluation is the systematic process of documenting and using empirical data on the knowledge, skill, attitudes, aptitude and beliefs to refine programs and improve student learning. Assessment data can be obtained from directly examining student work to assess the achievement of learning outcomes or can be based on data from which one can make inferences about learning. Assessment is often used interchangeably with test, but not limited to tests. Assessment can focus on the individual learner, the learning community, a course, an academic program, the institution, or the educational system as a whole. The word "assessment" came into use in an educational context after the Second World War.

Blended learning or hybrid learning, also known as technology-mediated instruction, web-enhanced instruction, or mixed-mode instruction, is an approach to education that combines online educational materials and opportunities for interaction online with physical place-based classroom methods.

Electronic assessment, also known as digital assessment, e-assessment, online assessment or computer-based assessment, is the use of information technology in assessment such as educational assessment, health assessment, psychiatric assessment, and psychological assessment. This covers a wide range of activities ranging from the use of a word processor for assignments to on-screen testing. Specific types of e-assessment include multiple choice, online/electronic submission, computerized adaptive testing such as the Frankfurt Adaptive Concentration Test, and computerized classification testing.

<span class="mw-page-title-main">PLATO (computer system)</span> Mainframe computer system

PLATO, also known as Project Plato and Project PLATO, was the first generalized computer-assisted instruction system. Starting in 1960, it ran on the University of Illinois's ILLIAC I computer. By the late 1970s, it supported several thousand graphics terminals distributed worldwide, running on nearly a dozen different networked mainframe computers. Many modern concepts in multi-user computing were first developed on PLATO, including forums, message boards, online testing, email, chat rooms, picture languages, instant messaging, remote screen sharing, and multiplayer video games.

A learning management system (LMS) or virtual learning environment (VLE) is a software application for the administration, documentation, tracking, reporting, automation, and delivery of educational courses, training programs, materials or learning and development programs. The learning management system concept emerged directly from e-Learning. Learning management systems make up the largest segment of the learning system market. The first introduction of the LMS was in the late 1990s. LMSs have been adopted by almost all higher education institutions in the English-speaking world. Learning management systems have faced a massive growth in usage due to the emphasis on remote learning during the COVID-19 pandemic.

Educational technology is the combined use of computer hardware, software, and educational theory and practice to facilitate learning. When referred to with its abbreviation, "EdTech," it often refers to the industry of companies that create educational technology. In EdTech Inc.: Selling, Automating and Globalizing Higher Education in the Digital Age, Tanner Mirrlees and Shahid Alvi (2019) argue "EdTech is no exception to industry ownership and market rules" and "define the EdTech industries as all the privately owned companies currently involved in the financing, production and distribution of commercial hardware, software, cultural goods, services and platforms for the educational market with the goal of turning a profit. Many of these companies are US-based and rapidly expanding into educational markets across North America, and increasingly growing all over the world."

Technology integration is defined as the use of technology to enhance and support the educational environment. Technology integration in the classroom can also support classroom instruction by creating opportunities for students to complete assignments on the computer rather than with normal pencil and paper. In a larger sense, technology integration can also refer to the use of an integration platform and application programming interface (API) in the management of a school, to integrate disparate SaaS applications, databases, and programs used by an educational institution so that their data can be shared in real-time across all systems on campus, thus supporting students' education by improving data quality and access for faculty and staff.

"Curriculum integration with the use of technology involves the infusion of technology as a tool to enhance the learning in a content area or multidisciplinary setting... Effective technology integration is achieved when students can select technology tools to help them obtain information on time, analyze and synthesize it, and present it professionally to an authentic audience. Technology should become an integral part of how the classroom functions—as accessible as all other classroom tools. The focus in each lesson or unit is the curriculum outcome, not the technology."

An intelligent tutoring system (ITS) is a computer system that imitates human tutors and aims to provide immediate and customized instruction or feedback to learners, usually without requiring intervention from a human teacher. ITSs have the common goal of enabling learning in a meaningful and effective manner by using a variety of computing technologies. There are many examples of ITSs being used in both formal education and professional settings in which they have demonstrated their capabilities and limitations. There is a close relationship between intelligent tutoring, cognitive learning theories and design; and there is ongoing research to improve the effectiveness of ITS. An ITS typically aims to replicate the demonstrated benefits of one-to-one, personalized tutoring, in contexts where students would otherwise have access to one-to-many instruction from a single teacher, or no teacher at all. ITSs are often designed with the goal of providing access to high quality education to each and every student.

Computer-supported collaborative learning (CSCL) is a pedagogical approach wherein learning takes place via social interaction using a computer or through the Internet. This kind of learning is characterized by the sharing and construction of knowledge among participants using technology as their primary means of communication or as a common resource. CSCL can be implemented in online and classroom learning environments and can take place synchronously or asynchronously.

Formative assessment, formative evaluation, formative feedback, or assessment for learning, including diagnostic testing, is a range of formal and informal assessment procedures conducted by teachers during the learning process in order to modify teaching and learning activities to improve student attainment. The goal of a formative assessment is to monitor student learning to provide ongoing feedback that can help students identify their strengths and weaknesses and target areas that need work. It also helps faculty recognize where students are struggling and address problems immediately. It typically involves qualitative feedback for both student and teacher that focuses on the details of content and performance. It is commonly contrasted with summative assessment, which seeks to monitor educational outcomes, often for purposes of external accountability.

In the history of virtual learning environments, the 1990s was a time of growth, primarily due to the advent of the affordable computer and of the Internet.

<span class="mw-page-title-main">History of virtual learning environments</span> Home

A Virtual Learning Environment (VLE) is a system specifically designed to facilitate the management of educational courses by teachers for their students. It predominantly relies on computer hardware and software, enabling distance learning. In North America, this concept is commonly denoted as a "Learning Management System" (LMS).

Adaptive learning, also known as adaptive teaching, is an educational method which uses computer algorithms as well as artificial intelligence to orchestrate the interaction with the learner and deliver customized resources and learning activities to address the unique needs of each learner. In professional learning contexts, individuals may "test out" of some training to ensure they engage with novel instruction. Computers adapt the presentation of educational material according to students' learning needs, as indicated by their responses to questions, tasks and experiences. The technology encompasses aspects derived from various fields of study including computer science, AI, psychometrics, education, psychology, and brain science.

<span class="mw-page-title-main">Flipped classroom</span> Instructional strategy and a type of blended learning

A flipped classroom is an instructional strategy and a type of blended learning. It aims to increase student engagement and learning by having pupils complete readings at home, and work on live problem-solving during class time. This pedagogical style moves activities, including those that may have traditionally been considered homework, into the classroom. With a flipped classroom, students watch online lectures, collaborate in online discussions, or carry out research at home, while actively engaging concepts in the classroom with a mentor's guidance.

<span class="mw-page-title-main">Kahoot!</span> Norwegian online educational quiz game

Kahoot! is a Norwegian online game-based learning platform. It has learning games, also known as "kahoots", which are user-generated multiple-choice quizzes that can be accessed via a web browser or the Kahoot! app.

Language MOOCs are web-based online courses freely accessible for a limited period of time, created for those interested in developing their skills in a foreign language. As Sokolik (2014) states, enrolment is large, free and not restricted to students by age or geographic location. They have to follow the format of a course, i.e., include a syllabus and schedule and offer the guidance of one or several instructors. The MOOCs are not so new, since courses with such characteristics had been available online for quite a lot of time before Dave Cormier coined the term 'MOOC' in 2008. Furthermore, MOOCs are generally regarded as the natural evolution of OERs, which are freely accessible materials used in Education for teaching, learning and assessment.

Information Communications Technology is usually included in the Home Economics and Livelihood Education program in grade school and taught through the Technology and Home Economics program in high school. The recent status of ICT education in the Philippines, along with other Southeast Asian countries, was surveyed by the Southeast Asian Ministers of Education Organization (SEAMEO) in 2011. Using the UNESCO model of ICT Development in Education, the countries were ranked as Emerging, Applying, Infusing or Transforming. The Philippines were ranked at the Infusing stage of integrating ICT in education, indicating that the country has integrated ICT into existing teaching, learning and administrative practices and policies. This includes components such as a national vision of ICT in education, national ICT plans and policies, complementary national ICT and education policies, professional development for teachers and school leaders, community or partnership and teaching and learning pedagogies. A 2012 study reported that public high schools in Metro Manila had a computer to student ratio of 1:63. While 88 percent of schools have internet connections, half of the students claimed not to be using it.

<span class="mw-page-title-main">Digital media in education</span>

Digital Media in education is measured by a person's ability to access, analyze, evaluate, and produce media content and communication in a variety of forms. These media may involve incorporating multiple digital softwares, devices, and platforms as a tool for learning. The use of digital media in education is growing rapidly in today's age, competing with books for the leading form of communication. This form of education is slowly combating the traditional forms of education that have been around for a long time. With the introduction of virtual education, there has been a need for more incorporation of new digital platforms in online classrooms.

References

  1. "Instructional Systems Development". Archived from the original on 2016-03-12. Retrieved 2014-02-24.
  2. Pearson Education Technologies launches concert. | North America > United States from AllBusiness.com Archived September 25, 2008, at the Wayback Machine
  3. Lee, Jae Mu (2012), Seel, Norbert M. (ed.), "Courseware Learning", Encyclopedia of the Sciences of Learning, Springer US, pp. 823–826
  4. "ABC News October 7: School Tries to Go Paperless". ABC News. 2006-01-07. Retrieved 2012-12-06.
  5. "Online Assessment Tools for Teachers & Student | Online Assessment Software". www.iitms.co.in. Retrieved 2022-02-25.
  6. "Quiz/Survey/Test Online". 9 December 2023.
  7. Drage, Chris (September 1991). "Design for learning". BBC Acorn User. No. 110. Redwood Publishing. pp. 110–111. ISSN   0263-7456.
  8. "April Kung, "The Case for Educational Software in the Life Sciences" (2004)" (PDF). Archived from the original (PDF) on 2013-07-06. Retrieved 2012-12-06.
  9. Buckley, Jim; DeWille, Tabea; Exton, Chris; Exton, Geraldine; Murray, Liam (20 June 2018). "A Gamification–Motivation Design Framework for Educational Software Developers". Journal of Educational Technology Systems. 47 (1): 101–127. doi: 10.1177/0047239518783153 . hdl: 10344/6911 .
  10. "Classcraft - Relationships are everything". Classcraft. Retrieved 2024-04-11.
  11. Bennane, Abdellah (December 2012). "Adaptive Educational Software by Applying Reinforcement Learning" (PDF). Informatics in Education. 12 via EBSCOhost.
  12. Hetzroni, Orit E. (July 2016). "The Effect of Educational Software, Video Modelling and Group Discussion on Social-Skill Acquisition Among Students with Mild Intellectual Disabilities". Journal of Applied Research in Intellectual Disabilities. 30 (4): 757–773. doi:10.1111/jar.12271. PMID   27406635. S2CID   4424530.
  13. KAROLČÍK, Štefan; ČIPKOVÁ, Elena; HRUŠECKÝ, Roman; VESELSKÝ, Milan (2015). "The Comprehensive Evaluation of Electronic Learning Tools and Educational Software (CEELTES)". Informatics in Education. 14 (2): 243–264. doi: 10.15388/infedu.2015.14 .
  14. Karolcík, Štefan (2015). "The Comprehensive Evaluation of Electronic Learning Tools and Educational Software (CEELTES)". Informatics in Education. 14 (2): 243–264. doi: 10.15388/infedu.2015.14 via ERIC.
  15. Mauco, Maria Virginia (November 2014). "Educational Software for First Order Logic Semantics in Introductory Logic Courses" (PDF). Information Systems Education Journal. 12: 15–23 via ERIC.