Exhaust brake

Last updated

An exhaust brake is a means of slowing a diesel engine by closing off the exhaust path from the engine, causing the exhaust gases to be compressed in the exhaust manifold, and in the cylinder. Since the exhaust is being compressed, and there is no fuel being applied, the engine slows down the vehicle. The amount of negative torque generated is usually directly proportional to the back pressure of the engine.

Contents

An exhaust brake is a device that essentially creates a major restriction in the exhaust system, and creates substantial exhaust back pressure to retard engine speed and offer some supplemental braking. In most cases, an exhaust brake is so effective that it can slow a heavily loaded vehicle on a downgrade without ever applying the vehicle's service brakes. Exhaust brakes are manufactured by many companies. The brakes vary in design, but essentially operate as described above. More advanced exhaust brakes have exhaust pressure modulation (EPM) that controls the back pressure which in turn improves the braking performance across a range of engine speeds.

Description

An exhaust brake is a valve which essentially creates a back-pressure in the exhaust system, which applies enough force onto the engine's pistons to slow the engine. In most cases, an exhaust brake is so effective that it can slow a heavily-loaded vehicle on a downgrade without ever applying the vehicle’s service brakes. Under these conditions, the exhaust flow from the cylinders is bottlenecked and rapidly builds pressure in the exhaust system upstream from the exhaust brake. Depending on engine speed, this pressure can easily reach up to 60 PSI maximum working pressure. Maximum working pressure is limited as part of the design of an exhaust brake. In this example, that same 60 PSI also remains in the cylinder for the entire exhaust stroke (exhaust valve open) and exerts 60 PSI on the piston top to resist its upward movement. This produces a negative torque, slowing the engine for a braking effect.

Some innovations increase the exhaust back-pressure by various means, leading to more torque at the flywheel, and therefore more braking power. Braking effectiveness is measured in units of power and is about 60 to 80% of the engine's maximum power output. More performance can be achieved by down shifting the vehicle (increasing the leverage, or gear ratio of the engine over the wheels). See also Jake brake, a popular compression brake.

Sound

A compression brake, a form of engine brake, produces greater noise than an exhaust brake. For this reason, some vehicle original equipment manufacturers prefer to use an exhaust brake despite its lower braking power. Combining compression braking with exhaust braking[ how? ] can increase effectiveness without being as loud as a compression brake alone.

Numerous jurisdictions ban the use of an unmuffled compression brake.

Pedal-operated butterfly valve

The butterfly valve is made up of metal made in a circular shape, having three peripheral circular cuts on it. These circular cuts are made because it is not expected to block the whole cross section of the exhaust pipe. If there were no holes, the engine would stop instead of slowing down.

The butterfly valve is actuated through hydraulic linkages. This consists of a hydraulic pressure pump which is connected to the butterfly valve. This pump controls the operation of butterfly valve in following manner: When brakes are applied by the driver, the cylinder reduces its pressure so that the valve closes and restricts the path of exhaust gases. In this position the butterfly valve remains perpendicular to the flow of exhaust gases and thus creates back pressure on the engine. The butterfly valve has one to three holes in it so that there is not a complete blockage of the exhaust pipe. This assures the avoidance of damage due to high pressure.

When the brakes are released by the driver, the cylinder generates pressure so that the butterfly valve is opened and allows the exhaust gases to flow into the exhaust pipe. In this position the butterfly valve remains parallel to the path of exhaust gases and thus releases the pressure on the engine and allows its speed to increase.

Two-stage pressure control

Increase in the back pressure with the help of a butterfly valve can also be achieved by operating in two stages i.e. two valves can be used. This also ensures the efficient working of the valve and increase longevity by avoiding valve failure. Such type of arrangement is found to be very useful in the case of heavy duty trucks. To create sufficient back pressure to reduce the engine speed, it requires a large force from the valve which is made possible by a two-valve arrangement.

ARIS actuator valve

Usually pneumatic or hydraulic actuators are used to operate the butterfly valve, but with the large force of exhaust gases this type of actuator turns out to be inefficient, hence the ARIS type of valve actuator which is widely used in the industry and provides effective valve-operating force.

Images

Related Research Articles

<span class="mw-page-title-main">Four-stroke engine</span> Internal combustion engine type

A four-strokeengine is an internal combustion (IC) engine in which the piston completes four separate strokes while turning the crankshaft. A stroke refers to the full travel of the piston along the cylinder, in either direction. The four separate strokes are termed:

  1. Intake: Also known as induction or suction. This stroke of the piston begins at top dead center (T.D.C.) and ends at bottom dead center (B.D.C.). In this stroke the intake valve must be in the open position while the piston pulls an air-fuel mixture into the cylinder by producing a partial vacuum in the cylinder through its downward motion.
  2. Compression: This stroke begins at B.D.C, or just at the end of the suction stroke, and ends at T.D.C. In this stroke the piston compresses the air-fuel mixture in preparation for ignition during the power stroke (below). Both the intake and exhaust valves are closed during this stage.
  3. Combustion: Also known as power or ignition. This is the start of the second revolution of the four stroke cycle. At this point the crankshaft has completed a full 360 degree revolution. While the piston is at T.D.C. the compressed air-fuel mixture is ignited by a spark plug or by heat generated by high compression, forcefully returning the piston to B.D.C. This stroke produces mechanical work from the engine to turn the crankshaft.
  4. Exhaust: Also known as outlet. During the exhaust stroke, the piston, once again, returns from B.D.C. to T.D.C. while the exhaust valve is open. This action expels the spent air-fuel mixture through the exhaust port.
<span class="mw-page-title-main">Vacuum brake</span> Train braking system

The vacuum brake is a braking system employed on trains and introduced in the mid-1860s. A variant, the automatic vacuum brake system, became almost universal in British train equipment and in countries influenced by British practice. Vacuum brakes also enjoyed a brief period of adoption in the United States, primarily on narrow-gauge railroads. Their limitations caused them to be progressively superseded by compressed air systems starting in the United Kingdom from the 1970s onward. The vacuum brake system is now obsolete; it is not in large-scale usage anywhere in the world, other than in South Africa, largely supplanted by air brakes.

<span class="mw-page-title-main">Fluid power</span> Use of fluids under pressure to generate, control, and transmit power

Fluid power is the use of fluids under pressure to generate, control, and transmit power. Fluid power is conventionally subdivided into hydraulics and pneumatics. Although steam is also a fluid, steam power is usually classified separately from fluid power. Compressed-air and water-pressure systems were once used to transmit power from a central source to industrial users over extended geographic areas; fluid power systems today are usually within a single building or mobile machine.

<span class="mw-page-title-main">Variable valve timing</span> Process of altering the timing of a valve lift event

Variable valve timing (VVT) is the process of altering the timing of a valve lift event in an internal combustion engine, and is often used to improve performance, fuel economy or emissions. It is increasingly being used in combination with variable valve lift systems. There are many ways in which this can be achieved, ranging from mechanical devices to electro-hydraulic and camless systems. Increasingly strict emissions regulations are causing many automotive manufacturers to use VVT systems.

<span class="mw-page-title-main">VVT-i</span> Automobile variable valve timing technology

VVT-i, or Variable Valve Timing with intelligence, is an automobile variable valve timing technology developed by Toyota. It was introduced in 1995 with the 2JZ-GE engine found in the JZS155 Toyota Crown and Crown Majesta.

<span class="mw-page-title-main">Variable camshaft timing</span> Automobile variable valve timing technology

Variable camshaft timing (VCT) is an automobile variable valve timing technology developed by Ford. It allows for more optimum engine performance, reduced emissions, and increased fuel efficiency compared to engines with fixed camshafts. It uses electronically controlled hydraulic valves that direct high pressure engine oil into the camshaft phaser cavity. These oil control solenoids are bolted into the cylinder heads towards the front of the engine near the camshaft phasers. The powertrain control module (PCM) transmits a signal to the solenoids to move a valve spool that regulates the flow of oil to the phaser cavity. The phaser cavity changes the valve timing by rotating the camshaft slightly from its initial orientation, which results in the camshaft timing being advanced. The PCM adjusts the camshaft timing depending on factors such as engine load and RPM.

<span class="mw-page-title-main">Active valve control system</span> Automobile variable valve timing technology

The active valve control system (AVCS) is an automobile variable valve timing technology used by Subaru. It varies the timing of the valves by using hydraulic oil pressure to rotate the camshaft, known as "phasing", in order to provide optimal valve timing for engine load conditions. The system is closed loop using the camshaft sensors, crankshaft sensors, air flow meter, throttle position as well as oxygen sensors and/or Air-Fuel ratio sensors in order to calculate engine load. The ECU is programmed to operate control valves that adjust the delivery of the hydraulic pressure in order to move the camshaft into the position that will provide the engine with the best performance while meeting emissions standards.

The GM Ecotec engine, also known by its codename L850, is a family of all-aluminium inline-four engines, displacing between 1.4 and 2.5 litres. Confusingly, the Ecotec name was also applied to both the Buick V6 Engine when used in Holden Vehicles, as well as the final DOHC derivatives of the previous GM Family II engine; the architecture was substantially re-engineered for this new Ecotec application produced since 2000. This engine family replaced the GM Family II engine, the GM 122 engine, the Saab H engine, and the Quad 4 engine. It is manufactured in multiple locations, to include Spring Hill Manufacturing, in Spring Hill, Tennessee, with engine blocks and cylinder heads cast at Saginaw Metal Casting Operations in Saginaw, Michigan.

<span class="mw-page-title-main">Compression release engine brake</span> Mechanism of some diesel engines

A compression release engine brake, compression brake, or decompression brake is an engine braking mechanism installed on some diesel engines. When activated, it opens exhaust valves to the cylinders, right before the compression stroke ends, releasing the compressed gas trapped in the cylinders, and slowing the vehicle.

<span class="mw-page-title-main">Exhaust manifold</span> Structure collecting an engines exhaust outlets

In automotive engineering, an exhaust manifold collects the exhaust gases from multiple cylinders into one pipe. The word manifold comes from the Old English word manigfeald and refers to the folding together of multiple inputs and outputs.

<span class="mw-page-title-main">Engine braking</span> Retarding forces within an engine used to slow a vehicle

Engine braking occurs when the retarding forces within an internal combustion engine are used to slow down a motor vehicle, as opposed to using additional external braking mechanisms such as friction brakes or magnetic brakes.

<span class="mw-page-title-main">Inlet manifold</span> Automotive technology

An inlet manifold or intake manifold is the part of an internal combustion engine that supplies the fuel/air mixture to the cylinders. The word manifold comes from the Old English word manigfeald and refers to the multiplying of one (pipe) into many.

<span class="mw-page-title-main">Hydraulic machinery</span> Type of machine that uses liquid fluid power to perform work

Hydraulic machines use liquid fluid power to perform work. Heavy construction vehicles are a common example. In this type of machine, hydraulic fluid is pumped to various hydraulic motors and hydraulic cylinders throughout the machine and becomes pressurized according to the resistance present. The fluid is controlled directly or automatically by control valves and distributed through hoses, tubes, or pipes.

A wastegate is a valve that controls the flow of exhaust gases to the turbine wheel in a turbocharged engine system.

Manifold vacuum, or engine vacuum in an internal combustion engine is the difference in air pressure between the engine's intake manifold and Earth's atmosphere.

Homogeneous Charge Compression Ignition (HCCI) is a form of internal combustion in which well-mixed fuel and oxidizer are compressed to the point of auto-ignition. As in other forms of combustion, this exothermic reaction produces heat that can be transformed into work in a heat engine.

<span class="mw-page-title-main">Retarder (mechanical engineering)</span> Device for slowing down large vehicles

A retarder is a device used to augment or replace some of the functions of primary friction-based braking systems, usually on heavy vehicles. Retarders serve to slow vehicles, or maintain a steady speed while traveling down a hill, and help prevent the vehicle from unintentional or uncontrolled acceleration when travelling on a road surface with an uneven grade. They are not usually capable of bringing vehicles to a standstill, as their effectiveness diminishes as a vehicle's speed lowers. Instead, they are typically used as an additional aid to slow vehicles, with the final braking done by a conventional friction braking system. An additional benefit retarders are capable of providing is an increase in the service life of the friction brake, as it is subsequently used less frequently, particularly at higher speeds. Additionally, air actuated brakes serve a dual role in conserving air pressure.

<span class="mw-page-title-main">Volvo FE</span> Motor vehicle

The Volvo FE is a medium duty truck produced by Volvo Trucks Corporation since 2006, now in its second generation. The FE is available in various rigid versions and a tractor version spanning three weight classes.

Jacobs Vehicle Systems, Inc. is an American company that engineers, develops and manufacturers commercial vehicle retarding and valve actuation technologies. The company produces light-duty, medium-duty, and heavy-duty engine brakes, recreational vehicle exhaust brakes, aftermarket parts and tune-up kits to heavy-duty diesel engine manufacturers in its domestic market in America, as well as in Asia and Europe. The company was incorporated in 1990 and is based in Bloomfield, Connecticut. Jacobs Vehicle Systems, Inc. operates as a subsidiary of Altra Industrial Motion Corporation. On 9 February 2022, Cummins, Inc. announced an agreement to acquire Jacobs Vehicle Systems from Altra.

<span class="mw-page-title-main">Internal combustion engine</span> Engine in which the combustion of a fuel occurs with an oxidizer in a combustion chamber

An internal combustion engine is a heat engine in which the combustion of a fuel occurs with an oxidizer in a combustion chamber that is an integral part of the working fluid flow circuit. In an internal combustion engine, the expansion of the high-temperature and high-pressure gases produced by combustion applies direct force to some component of the engine. The force is typically applied to pistons, turbine blades, a rotor, or a nozzle. This force moves the component over a distance, transforming chemical energy into kinetic energy which is used to propel, move or power whatever the engine is attached to.

References