Filibuvir

Last updated
Filibuvir
Filibuvir.svg
Clinical data
Other namesPF-00868554
Routes of
administration
Oral
ATC code
  • none
Legal status
Legal status
  • Development terminated
Identifiers
  • (2R)-2-cyclopentyl-2-[2-(2,6-diethylpyridin-4-yl)ethyl]-5-[(5,7-dimethyl-[1,2,4]triazolo[1,5-a]pyrimidin-2-yl)methyl]-4-hydroxy-3H-pyran-6-one
CAS Number
PubChem CID
ChemSpider
UNII
KEGG
ChEMBL
PDB ligand
CompTox Dashboard (EPA)
Chemical and physical data
Formula C29H37N5O3
Molar mass 503.647 g·mol−1
3D model (JSmol)
  • CCC1=CC(=CC(=N1)CC)CC[C@@]2(CC(=C(C(=O)O2)CC3=NN4C(=CC(=NC4=N3)C)C)O)C5CCCC5
  • InChI=1S/C29H37N5O3/c1-5-22-14-20(15-23(6-2)31-22)11-12-29(21-9-7-8-10-21)17-25(35)24(27(36)37-29)16-26-32-28-30-18(3)13-19(4)34(28)33-26/h13-15,21,35H,5-12,16-17H2,1-4H3/t29-/m1/s1
  • Key:SLVAPEZTBDBAPI-GDLZYMKVSA-N

Filibuvir (also known as PF-00868554, PF-868554) was a non-nucleoside orally available [1] NS5B inhibitor developed by Pfizer for the treatment of hepatitis C. It binds to the non-catalytic Thumb II allosteric pocket of NS5B viral polymerase and causes a decrease in viral RNA synthesis. It is a potent and selective inhibitor, with a mean IC50 of 0.019 μM against genotype 1 polymerases. [2] Several filibuvir-resistant mutations have been identified, M423 being the most common that occurred after filibuvir monotherapy. [3] It was intended to be taken twice-daily. [4]

Its investigation was discontinued in February 2013 due to strategic reasons. [5] [6]

Related Research Articles

Reverse-transcriptase inhibitors (RTIs) are a class of antiretroviral drugs used to treat HIV infection or AIDS, and in some cases hepatitis B. RTIs inhibit activity of reverse transcriptase, a viral DNA polymerase that is required for replication of HIV and other retroviruses.

<span class="mw-page-title-main">Lamivudine</span> Chemical compound

Lamivudine, commonly called 3TC, is an antiretroviral medication used to prevent and treat HIV/AIDS. It is also used to treat chronic hepatitis B when other options are not possible. It is effective against both HIV-1 and HIV-2. It is typically used in combination with other antiretrovirals such as zidovudine and abacavir. Lamivudine may be included as part of post-exposure prevention in those who have been potentially exposed to HIV. Lamivudine is taken by mouth as a liquid or tablet.

<span class="mw-page-title-main">Hepatitis C virus</span> Species of virus

The hepatitis C virus (HCV) is a small, enveloped, positive-sense single-stranded RNA virus of the family Flaviviridae. The hepatitis C virus is the cause of hepatitis C and some cancers such as liver cancer and lymphomas in humans.

<span class="mw-page-title-main">Resistance mutation (virology)</span>

A resistance mutation is a mutation in a virus gene that allows the virus to become resistant to treatment with a particular antiviral drug. The term was first used in the management of HIV, the first virus in which genome sequencing was routinely used to look for drug resistance. At the time of infection, a virus will infect and begin to replicate within a preliminary cell. As subsequent cells are infected, random mutations will occur in the viral genome. When these mutations begin to accumulate, antiviral methods will kill the wild type strain, but will not be able to kill one or many mutated forms of the original virus. At this point a resistance mutation has occurred because the new strain of virus is now resistant to the antiviral treatment that would have killed the original virus. Resistance mutations are evident and widely studied in HIV due to its high rate of mutation and prevalence in the general population. Resistance mutation is now studied in bacteriology and parasitology.

<span class="mw-page-title-main">PSI-6130</span> Chemical compound

PSI-6130 is an experimental treatment for hepatitis C. PSI-6130 is a member of a class of antiviral drugs known as nucleoside polymerase inhibitors that was created by chemist Jeremy L. Clark. Specifically, PSI-6130 inhibits the hepatitis C virus RNA dependant RNA polymerase called NS5B.

Discovery and development of nucleoside and nucleotide reverse-transcriptase inhibitors began in the 1980s when the AIDS epidemic hit Western societies. NRTIs inhibit the reverse transcriptase (RT), an enzyme that controls the replication of the genetic material of the human immunodeficiency virus (HIV). The first NRTI was zidovudine, approved by the U.S. Food and Drug Administration (FDA) in 1987, which was the first step towards treatment of HIV. Six NRTI agents and one NtRTI have followed. The NRTIs and the NtRTI are analogues of endogenous 2´-deoxy-nucleoside and nucleotide. Drug-resistant viruses are an inevitable consequence of prolonged exposure of HIV-1 to anti-HIV drugs.

<span class="mw-page-title-main">Daclatasvir</span> Chemical compound

Daclatasvir, sold under the brand name Daklinza, is an antiviral medication used in combination with other medications to treat hepatitis C (HCV). The other medications used in combination include sofosbuvir, ribavirin, and interferon, vary depending on the virus type and whether the person has cirrhosis. It is taken by mouth.

<span class="mw-page-title-main">Simeprevir</span> Chemical compound

Simeprevir, sold under the trade names Olysio among others, is a medication used in combination with other medications for the treatment of hepatitis C. It is specifically used for hepatitis C genotype 1 and 4. Medications it is used with include sofosbuvir or ribavirin and peginterferon-alfa. Cure rates are in 80s to 90s percent. It may be used in those who also have HIV/AIDS. It is taken by mouth once daily for typically 12 weeks.

<span class="mw-page-title-main">Ledipasvir</span> Hepatitis C drug

Ledipasvir is a drug for the treatment of hepatitis C that was developed by Gilead Sciences. After completing Phase III clinical trials, on February 10, 2014, Gilead filed for U.S. approval of a ledipasvir/sofosbuvir fixed-dose combination tablet for genotype 1 hepatitis C. The ledipasvir/sofosbuvir combination is a direct-acting antiviral agent that interferes with HCV replication and can be used to treat patients with genotypes 1a or 1b without PEG-interferon or ribavirin.

<span class="mw-page-title-main">NS5B (Hepacivirus)</span>

Nonstructural protein 5B (NS5B) is a viral protein found in the hepatitis C virus (HCV). It is an RNA-dependent RNA polymerase, having the key function of replicating HCV's viral RNA by using the viral positive RNA strand as a template to catalyze the polymerization of ribonucleoside triphosphates (rNTP) during RNA replication. Several crystal structures of NS5B polymerase in several crystalline forms have been determined based on the same consensus sequence BK. The structure can be represented by a right hand shape with fingers, palm, and thumb. The encircled active site, unique to NS5B, is contained within the palm structure of the protein. Recent studies on NS5B protein genotype 1b strain J4's (HC-J4) structure indicate a presence of an active site where possible control of nucleotide binding occurs and initiation of de-novo RNA synthesis. De-novo adds necessary primers for initiation of RNA replication.

<span class="mw-page-title-main">MK-608</span>

MK-608 is an antiviral drug, an adenosine analog. It was originally developed by Merck & Co. as a treatment for hepatitis C, but despite promising results in animal studies, it was ultimately unsuccessful in clinical trials. Subsequently it has been widely used in antiviral research and has shown activity against a range of viruses, including Dengue fever, tick-borne encephalitis virus, poliovirus, and most recently Zika virus, in both in vitro and animal models. Since it has already failed in human clinical trials previously, it is unlikely MK-608 itself will be developed as an antiviral medication, but the continuing lack of treatment options for these emerging viral diseases means that much research continues using MK-608 and related antiviral drugs.

<span class="mw-page-title-main">Discovery and development of NS5A inhibitors</span>

Nonstructural protein 5A (NS5A) inhibitors are direct acting antiviral agents (DAAs) that target viral proteins, and their development was a culmination of increased understanding of the viral life cycle combined with advances in drug discovery technology. However, their mechanism of action is complex and not fully understood. NS5A inhibitors were the focus of much attention when they emerged as a part of the first curative treatment for hepatitis C virus (HCV) infections in 2014. Favorable characteristics have been introduced through varied structural changes, and structural similarities between NS5A inhibitors that are clinically approved are readily apparent. Despite the recent introduction of numerous new antiviral drugs, resistance is still a concern and these inhibitors are therefore always used in combination with other drugs.

<span class="mw-page-title-main">Mericitabine</span>

Mericitabine (RG-7128) is an antiviral drug, a deoxycytidine analog. It was developed as a treatment for hepatitis C, acting as a NS5B RNA polymerase inhibitor, but while it showed a good safety profile in clinical trials, it was not sufficiently effective to be used as a stand-alone agent. However mericitabine has been shown to boost the efficacy of other antiviral drugs when used alongside them, and as most modern treatment regimens for hepatitis C use a combination therapy of several antiviral drugs, clinical trials have continued to see if it can form a part of a clinically useful drug treatment program.

HSV epigenetics is the epigenetic modification of herpes simplex virus (HSV) genetic code.

<span class="mw-page-title-main">NS5B inhibitor</span>

Non-structural protein 5B (NS5B) inhibitors are a class of direct-acting antivirals widely used in the treatment of chronic hepatitis C. Depending on site of action and chemical composition, NS5B inhibitors may be categorized into three classes—nucleoside active site inhibitors (NIs), non-nucleoside allosteric inhibitors, and pyrophosphate analogues. Subsequently, all three classes are then subclassified. All inhibit RNA synthesis by NS5B but at different stages/sites resulting in inability of viral RNA replication. Expression of direct-acting NS5B inhibitors does not take place in cells that are not infected by hepatitis C virus, which seems to be beneficial for this class of drugs.

<span class="mw-page-title-main">Lumicitabine</span>

Lumicitabine (ALS-8176) is an antiviral drug which was developed as a treatment for respiratory syncytial virus (RSV) and human metapneumovirus (hMPV). It acts as an RNA polymerase inhibitor. While it showed promise in early clinical trials, poor results in Phase IIb trials led to it being discontinued from development for treatment of RSV. Research continues to determine whether it may be useful for the treatment of diseases caused by other RNA viruses, and it has been found to show activity against Nipah virus.

<span class="mw-page-title-main">Uprifosbuvir</span>

Uprifosbuvir (MK-3682) is an antiviral drug developed for the treatment of Hepatitis C. It is a nucleotide analogue which acts as an NS5B RNA polymerase inhibitor. It is currently in Phase III human clinical trials.

<span class="mw-page-title-main">GS-6620</span>

GS-6620 is an antiviral drug which is a nucleotide analogue. It was developed for the treatment of Hepatitis C but while it showed potent antiviral effects in early testing, it could not be successfully formulated into an oral dosage form due to low and variable absorption in the intestines which made blood levels unpredictable. It has however continued to be researched as a potential treatment for other viral diseases such as Ebola virus disease.

<span class="mw-page-title-main">IDX-184</span>

IDX-184 is an antiviral drug which was developed as a treatment for hepatitis C, acting as a NS5B RNA polymerase inhibitor. While it showed reasonable effectiveness in early clinical trials it did not progress past Phase IIb. However research using this drug has continued as it shows potentially useful activity against other emerging viral diseases such as Zika virus, and coronaviruses including MERS, and SARS-CoV-2.

<span class="mw-page-title-main">TMC-647055</span>

TMC-647055 is an experimental antiviral drug which was developed as a treatment for hepatitis C, and is in clinical trials as a combination treatment with ribavirin and simeprevir. It acts as a NS5b polymerase inhibitor.

References

  1. "Pfizer Halts Development of Hepatitis C Drug Filibuvir: Report". FirstWorld Pharma. Doctor's Guide Publishing Limited. Retrieved 5 December 2015.
  2. Shi ST, Herlihy KJ, Graham JP, Nonomiya J, Rahavendran SV, Skor H, et al. (June 2009). "Preclinical characterization of PF-00868554, a potent nonnucleoside inhibitor of the hepatitis C virus RNA-dependent RNA polymerase". Antimicrobial Agents and Chemotherapy. 53 (6): 2544–52. doi:10.1128/AAC.01599-08. PMC   2687230 . PMID   19307358.
  3. Jiao P, Xue W, Shen Y, Jin N, Liu H (April 2014). "Understanding the drug resistance mechanism of hepatitis C virus NS5B to PF-00868554 due to mutations of the 423 site: a computational study". Molecular BioSystems. 10 (4): 767–77. doi:10.1039/c3mb70498j. PMID   24452008.
  4. Beaulieu PL (December 2010). "Filibuvir, a non-nucleoside NS5B polymerase inhibitor for the potential oral treatment of chronic HCV infection". IDrugs. 13 (12): 938–48. PMID   21154154.
  5. Loftus P (8 March 2013). "Pfizer Stops Developing Hepatitis C Drug". The Wall Street Journal. Dow Jones & Company, Inc. Retrieved 5 December 2015.
  6. Gentile I, Buonomo AR, Zappulo E, Borgia G (February 2015). "Discontinued drugs in 2012 - 2013: hepatitis C virus infection". Expert Opinion on Investigational Drugs. 24 (2): 239–51. doi:10.1517/13543784.2015.982274. PMID   25384989. S2CID   39936873.