Laninamivir

Last updated
Laninamivir
Laninamivir.svg
Clinical data
Routes of
administration
Inhalation
ATC code
Identifiers
  • (4S,5R,6R)-5-acetamido-4-carbamimidamido-6-[(1R,2R)-3-hydroxy-2-methoxypropyl]-5,6-dihydro-4H-pyran-2-carboxylic acid
CAS Number
PubChem CID
ChemSpider
UNII
ChEMBL
CompTox Dashboard (EPA)
Chemical and physical data
Formula C13H22N4O7
Molar mass 346.340 g·mol−1
3D model (JSmol)
  • O=C(O)C=1O[C@@H]([C@H](OC)[C@H](O)CO)[C@H](NC(=O)C)[C@@H](/N=C(\N)N)C=1
  • InChI=1S/C13H22N4O7/c1-5(19)16-9-6(17-13(14)15)3-8(12(21)22)24-11(9)10(23-2)7(20)4-18/h3,6-7,9-11,18,20H,4H2,1-2H3,(H,16,19)(H,21,22)(H4,14,15,17)/t6-,7+,9+,10+,11+/m0/s1 Yes check.svgY
  • Key:QNRRHYPPQFELSF-CNYIRLTGSA-N Yes check.svgY
 X mark.svgNYes check.svgY  (what is this?)    (verify)
Inavir Inavir.jpg
Inavir

Laninamivir (CS-8958) is a neuraminidase inhibitor that is a drug used for the treatment and prophylaxis of Influenzavirus A and Influenzavirus B. [1] It is currently in Phase III clinical trials. [2] It is a long-acting neuraminidase inhibitor administered by nasal inhalation. [3]

Laninamivir was approved for influenza treatment in Japan in 2010 and for prophylaxis in 2013. It is currently marketed under the name Inavir by Daiichi Sankyo. Biota Pharmaceuticals [4] and Daiichi Sankyo co-own Laninamivir. On 1 April 2011, BARDA awarded up to an estimated U$231m to Biota Pharmaceuticals (Formerly Biota Holdings Ltd) wholly owned subsidiary, Biota Scientific Management Pty Ltd, for the advanced development of Laninamivir in the US. [5] It is under clinical evaluations in other countries. [3] [6]

Related Research Articles

<span class="mw-page-title-main">Antiviral drug</span> Medication used to treat a viral infection

Antiviral drugs are a class of medication used for treating viral infections. Most antivirals target specific viruses, while a broad-spectrum antiviral is effective against a wide range of viruses. Antiviral drugs are one class of antimicrobials, a larger group which also includes antibiotic, antifungal and antiparasitic drugs, or antiviral drugs based on monoclonal antibodies. Most antivirals are considered relatively harmless to the host, and therefore can be used to treat infections. They should be distinguished from viricides, which are not medication but deactivate or destroy virus particles, either inside or outside the body. Natural viricides are produced by some plants such as eucalyptus and Australian tea trees.

<i>Orthomyxoviridae</i> Family of RNA viruses including the influenza viruses

Orthomyxoviridae is a family of negative-sense RNA viruses. It includes seven genera: Alphainfluenzavirus, Betainfluenzavirus, Gammainfluenzavirus, Deltainfluenzavirus, Isavirus, Thogotovirus, and Quaranjavirus. The first four genera contain viruses that cause influenza in birds and mammals, including humans. Isaviruses infect salmon; the thogotoviruses are arboviruses, infecting vertebrates and invertebrates. The Quaranjaviruses are also arboviruses, infecting vertebrates (birds) and invertebrates (arthropods).

<span class="mw-page-title-main">Zanamivir</span> Influenza medication

Zanamivir is a medication used to treat and prevent influenza caused by influenza A and influenza B viruses. It is a neuraminidase inhibitor and was developed by the Australian biotech firm Biota Holdings. It was licensed to Glaxo in 1990 and approved in the US in 1999, only for use as a treatment for influenza. In 2006, it was approved for prevention of influenza A and B. Zanamivir was the first neuraminidase inhibitor commercially developed. It is marketed by GlaxoSmithKline under the trade name Relenza as a powder for oral inhalation.

<span class="mw-page-title-main">Oseltamivir</span> Antiviral medication used against influenza A and influenza B

Oseltamivir, sold under the brand name Tamiflu, is an antiviral medication used to treat and prevent influenza A and influenza B, viruses that cause the flu. Many medical organizations recommend it in people who have complications or are at high risk of complications within 48 hours of first symptoms of infection. They recommend it to prevent infection in those at high risk, but not the general population. The Centers for Disease Control and Prevention (CDC) recommends that clinicians use their discretion to treat those at lower risk who present within 48 hours of first symptoms of infection. It is taken by mouth, either as a pill or liquid.

<span class="mw-page-title-main">Rimantadine</span> Drug used to treat influenzavirus A infection

Rimantadine is an orally administered antiviral drug used to treat, and in rare cases prevent, influenzavirus A infection. When taken within one to two days of developing symptoms, rimantadine can shorten the duration and moderate the severity of influenza. Rimantadine can mitigate symptoms, including fever. Both rimantadine and the similar drug amantadine are derivates of adamantane. Rimantadine is found to be more effective than amantadine because when used the patient displays fewer symptoms. Rimantadine was approved by the Food and Drug Administration (FDA) in 1994.

<span class="mw-page-title-main">Amantadine</span> Medication used to treat dyskinesia

Amantadine, sold under the brand name Gocovri among others, is a medication used to treat dyskinesia associated with parkinsonism and influenza caused by type A influenzavirus, though its use for the latter is no longer recommended due to widespread drug resistance. It acts as a nicotinic antagonist, dopamine agonist, and noncompetitive NMDA antagonist. The antiviral mechanism of action is antagonism of the influenzavirus A M2 proton channel, which prevents endosomal escape.

<span class="mw-page-title-main">Neuraminidase</span> Glycoside hydrolase enzymes that cleave the glycosidic linkages of neuraminic acids

Exo-α-sialidase is a glycoside hydrolase that cleaves the glycosidic linkages of neuraminic acids:

Neuraminidase inhibitors (NAIs) are a class of drugs which block the neuraminidase enzyme. They are a commonly used antiviral drug type against influenza. Viral neuraminidases are essential for influenza reproduction, facilitating viral budding from the host cell. Oseltamivir (Tamiflu), zanamivir (Relenza), laninamivir (Inavir), and peramivir belong to this class. Unlike the M2 inhibitors, which work only against the influenza A virus, NAIs act against both influenza A and influenza B.

<span class="mw-page-title-main">Peramivir</span> Antiviral drug targeting influenza

Peramivir is an antiviral drug developed by BioCryst Pharmaceuticals for the treatment of influenza. Peramivir is a neuraminidase inhibitor, acting as a transition-state analogue inhibitor of influenza neuraminidase and thereby preventing new viruses from emerging from infected cells. It is approved for intravenous administration.

<span class="mw-page-title-main">Influenza treatment</span> Therapy and pharmacy for the common infectious disease

Treatments for influenza include a range of medications and therapies that are used in response to disease influenza. Treatments may either directly target the influenza virus itself; or instead they may just offer relief to symptoms of the disease, while the body's own immune system works to recover from infection.

<span class="mw-page-title-main">Umifenovir</span> Chemical compound

Umifenovir, sold under the brand name Arbidol, is an antiviral medication for the treatment of influenza and COVID infections used in Russia and China. The drug is manufactured by Pharmstandard. It is not approved by the U.S. Food and Drug Administration (FDA) for the treatment or prevention of influenza.

<span class="mw-page-title-main">Nitazoxanide</span> Chemical compound

Nitazoxanide, sold under the brand name Alinia among others, is a broad-spectrum antiparasitic and broad-spectrum antiviral medication that is used in medicine for the treatment of various helminthic, protozoal, and viral infections. It is indicated for the treatment of infection by Cryptosporidium parvum and Giardia lamblia in immunocompetent individuals and has been repurposed for the treatment of influenza. Nitazoxanide has also been shown to have in vitro antiparasitic activity and clinical treatment efficacy for infections caused by other protozoa and helminths; evidence as of 2014 suggested that it possesses efficacy in treating a number of viral infections as well.

Nimotuzumab is a humanized monoclonal antibody that as of 2014 had orphan status in the US and EU for glioma, and marketing approval in India, China, and other countries for squamous cell carcinomas of the head and neck, and was undergoing several clinical trials.

<span class="mw-page-title-main">Viral neuraminidase</span>

Viral neuraminidase is a type of neuraminidase found on the surface of influenza viruses that enables the virus to be released from the host cell. Neuraminidases are enzymes that cleave sialic acid groups from glycoproteins. Neuraminidase inhibitors are antiviral agents that inhibit influenza viral neuraminidase activity and are of major importance in the control of influenza.

An antiviral stockpile is a reserve supply of essential antiviral medications in case of shortage. Many countries have chosen to stockpile antiviral medications against pandemic influenza. Because of the time required to prepare and distribute an influenza vaccine, these stockpiles are the only medical defense against widespread infection for the first six months. The stockpiles may be in the form of capsules or simply as the active pharmaceutical ingredient, which is stored in sealed drums and, when needed, dissolved in water to make a bitter-tasting, clear liquid.

<span class="mw-page-title-main">Favipiravir</span> Experimental antiviral drug with potential activity against RNA viruses

Favipiravir, sold under the brand name Avigan among others, is an antiviral medication used to treat influenza in Japan. It is also being studied to treat a number of other viral infections, including SARS-CoV-2. Like the experimental antiviral drugs T-1105 and T-1106, it is a pyrazinecarboxamide derivative.

Neuraminidase inhibitors inhibit enzymatic activity of the enzyme neuraminidase (sialidase). These type of inhibitors have been introduced as anti-influenza drugs as they prevent the virus from exiting infected cells and thus stop further spreading of the virus. Neuraminidase inhibitors for human neuraminidase (hNEU) have the potential to be useful drugs as the enzyme plays a role in several signaling pathways in cells and is implicated in diseases such as diabetes and cancer.

Margaret Tisdale was a Welsh-born clinical virologist known for her studies of antiviral resistance in HIV and influenza virus, and for coordinating the development of the anti-influenza drug zanamivir.

<span class="mw-page-title-main">Baloxavir marboxil</span> Antiviral medication

Baloxavir marboxil, sold under the brand name Xofluza, is an antiviral medication for treatment of influenza A and influenza B flu. It was approved for medical use both in Japan and in the United States in 2018, and is taken as a single dose by mouth. It may reduce the duration of flu symptoms by about a day, but is prone to selection of resistant mutants that render it ineffectual.

<span class="mw-page-title-main">EICAR (antiviral)</span> Chemical compound

EICAR is a drug which acts as an inhibitor of the enzyme IMP dehydrogenase. It is a nucleoside derivative which has both anti-cancer and antiviral effects, and was originally developed for the treatment of leukemia, but was unsuccessful in human clinical trials. It has broad spectrum antiviral effects with activity against pox viruses, Semliki forest virus, Junin virus, reovirus, influenza, measles virus and respiratory syncytial virus among others, although it is not active against coronaviridae such as SARS-CoV-1. This useful spectrum of activity means that EICAR and related derivatives continue to be investigated for the treatment of viral diseases.

References

  1. Yamashita M, Tomozawa T, Kakuta M, Tokumitsu A, Nasu H, Kubo S (January 2009). "CS-8958, a prodrug of the new neuraminidase inhibitor R-125489, shows long-acting anti-influenza virus activity". Antimicrobial Agents and Chemotherapy. 53 (1): 186–92. doi:10.1128/AAC.00333-08. PMC   2612152 . PMID   18955520.
  2. Hayden F (January 2009). "Developing new antiviral agents for influenza treatment: what does the future hold?". Clinical Infectious Diseases. 48. Suppl 1 (S1): S3–13. doi: 10.1086/591851 . PMID   19067613.
  3. 1 2 Samson, M; Pizzorno, A; Abed, Y; Boivin, G (May 2013). "Influenza virus resistance to neuraminidase inhibitors". Antiviral Research. 98 (2): 174–85. doi:10.1016/j.antiviral.2013.03.014. PMID   23523943.
  4. "Aviragen Therapeutics - Home". Archived from the original on 2016-04-17. Retrieved 2013-04-12.
  5. "Biota Pharmaceuticals - Home". Archived from the original on 2016-03-05. Retrieved 2013-04-12.
  6. Jiro Fujita. "Influenza: Advances in Diagnosis and Management", (2020), p. 132.