Hesperornis

Last updated

Hesperornis
Temporal range: Late Cretaceous (Campanian), 83.6–72  Ma
O
S
D
C
P
T
J
K
Pg
N
Possible early Maastrichtian record
Hesperornis at AMNH.jpg
Restored skeleton of H. regalis in diving posture at the American Museum of Natural History
Hesperornis BW (white background).jpg
Life reconstruction of H. regalis in diving posture
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Chordata
Clade: Dinosauria
Clade: Saurischia
Clade: Theropoda
Clade: Avialae
Clade: Hesperornithes
Family: Hesperornithidae
Genus: Hesperornis
Marsh, 1872
Type species
Hesperornis regalis
Marsh, 1872
Species

H. regalisMarsh, 1872
H. crassipes(Marsh, 1876)
H. gracilisMarsh, 1876
H. altus(Marsh, 1893)
H. montanaSchufeldt, 1915
H. rossicusNesov & Yarkov, 1993
H. bairdiMartin & Lim, 2002
H. chowiMartin & Lim, 2002
H. macdonaldiMartin & Lim, 2002
H. mengeliMartin & Lim, 2002
H. lumgairiAotsuka & Sato, 2016

Contents

Synonyms

LestornisMarsh, 1876
ConiornisMarsh, 1893
Hargeria Lucas, 1903

Hesperornis (meaning "western bird") is a genus of cormorant-like Ornithuran that spanned throughout the Campanian age, and possibly even up to the early Maastrichtian age, of the Late Cretaceous period. [1] [2] One of the lesser-known discoveries of the paleontologist O. C. Marsh in the late 19th century Bone Wars, it was an early find in the history of avian paleontology. Locations for Hesperornis fossils include the Late Cretaceous marine limestones from Kansas and the marine shales from Canada. Nine species are recognised, eight of which have been recovered from rocks in North America and one from Russia.

Description

Life restoration Hesperornis.png
Life restoration

Hesperornis was a large bird, measuring about 1.5–2 metres (4.9–6.6 ft) long and weighing around 10.6 kilograms (23 lb). [3] [4] [5] It had virtually no wings, and swam with its powerful hind legs. Studies on the feet initially indicated that Hesperornis and kin had lobed toes similar to modern-day grebes, as opposed to webbed toes as seen in most aquatic birds such as loons. [6] More recent work looking at the morphometrics of the feet in hesperornithiformes and modern sea birds has thrown this interpretation into question, making webbed toes equally as likely as lobed toes for this group. [7]

Like many other Mesozoic birds such as Ichthyornis , Hesperornis had teeth as well as a beak. In the hesperornithiform lineage they were of a different arrangement than in any other known bird (or in non-avian theropod dinosaurs), with the teeth sitting in a longitudinal groove rather than in individual sockets, in a notable case of convergent evolution with mosasaurs. [8] [9] The teeth of Hesperornis were present along nearly the entire lower jaw (dentary) and the back of the upper jaw (maxilla). The front portion of the upper jaw (premaxilla) and tip of the lower jaw (predentary) lacked teeth and were probably covered in a beak. Studies of the bone surface show that at least the tips of the jaws supported a hard, keratinous beak similar to that found in modern birds. [10] The palate (mouth roof) contained small pits that allowed the lower teeth to lock into place when the jaws were closed. [11] They also retained a dinosaur-like joint between the lower jaw bones. It is believed that this allowed them to rotate the back portion of the mandible independently of the front, thus allowing the lower teeth to disengage. [3]

History

Marsh's now-obsolete 1880 reconstruction of H. regalis Hesperornis Regalis - Project Gutenberg eText 16474.jpg
Marsh's now-obsolete 1880 reconstruction of H. regalis

The first Hesperornis specimen was discovered in 1871 by Othniel Charles Marsh. Marsh was undertaking his second western expedition, accompanied by ten students. [12] The team headed to Kansas where Marsh had dug before. Aside from finding more bones belonging to the flying reptile Pteranodon , Marsh discovered the skeleton of a "large fossil bird, at least five feet in height". The specimen was large, wingless, and had strong legs—Marsh considered it a diving species. Unfortunately, the specimen lacked a head. [13] Marsh named the find Hesperornis regalis, or "regal western bird". [14]

Marsh headed back west with a smaller party the following year. In western Kansas, one of Marsh's four students, Thomas H. Russell, discovered a "nearly perfect skeleton" of Hesperornis. [15] This specimen had enough of its head intact that Marsh could see that the creature's jaws had been lined with teeth. [16] Marsh saw important evolutionary implications of this find, along with Benjamin Mudge's find of the toothed bird Ichthyornis . [17] In an 1873 paper Marsh declared that "the fortunate discovery of these interesting fossils does much to break down the old distinction between Birds and Reptiles". [16] Meanwhile, Marsh's relationship with his rival Edward Drinker Cope soured further after Cope accidentally received boxes of fossils, including the toothed birds, that were meant for Marsh. Cope called the birds "simply delightful", but Marsh replied with accusations Cope had stolen the bones. [18] By 1873 their friendship dissolved into open hostility, helping to spark the Bone Wars. While Marsh would rarely go into the field after 1873, the collectors he paid continued to send him a stream of fossils. He eventually received parts of 50 specimens of Hesperornis, which allowed him to make a much stronger demonstration of an evolutionary link between reptiles and birds than had been possible before. [19]

Classification and Species

H. regalis specimen at the AMNH Hesperornis regalis fossil.jpg
H. regalis specimen at the AMNH

Many species have been described in this genus, though some are known from very few bones or even a single bone and cannot be properly compared with the more plentiful (but also incomplete) remains of other similar-sized taxa. In many cases, species have been separated by provenance, having been found in strata of different ages or in different locations, or by differences in size.

The first species to be described, the type species, is Hesperornis regalis. H. regalis is also the best known species, and dozens of specimens (from fragments to more complete skeletons) have been recovered, all from the Smoky Hill Chalk Member of the Niobrara Formation (dating to the early Campanian age, between 90 and 60 million years ago). [20] It is the only species of Hesperornis for which a nearly complete skull is known.

Hesperornis crassipes was named in 1876 by Marsh, who initially classified it in a different genus as Lestornis crassipes. H. crassipes was larger than H. regalis, had five ribs as opposed to four in the first species, and differed in aspects of the bone sculpturing on the breastbone and lower leg. H. crassipes is known from the same time and place as H. regalis. One incomplete skeleton is known, including teeth and parts of the skull. [21]

Left leg of H. gracilis Hesperornis gracilis.jpg
Left leg of H. gracilis

Marsh explicitly named his second species of Hesperornis in 1876 for an incomplete metatarsus recovered from the same layers of the Niobrara chalk as H. regalis. He named this smaller species H. gracilis, and it was subsequently involved in the rather confused taxonomy of a specimen which would eventually form the basis of the new genus and species Parahesperornis alexi . The type specimen of P. alexi was assumed to belong to the same specimen as that of H. gracilis, so when Lucas (1903) decided that the former specimen represented a distinct genus, he mistakenly used the later specimen to anchor it, creating the name Hargeria gracilis. This mistake was rectified by later authors, who sank Hargeria back into Hesperornis and renamed the more distinctive specimen Parahesperornis. [22] [23]

Type specimen (a partial right tibia) of H. altus in several views Coniornis.jpg
Type specimen (a partial right tibia) of H. altus in several views

The first species recognized from outside the Niobrara chalk, Hesperornis altus, lived about 78 million years ago in Montana, and is known from a partial lower leg from the base of the freshwater Judith River Formation (or, possibly, the top of the underlying, marine Claggett Shale formation). While initially placed in the new genus Coniornis by Marsh, this was due mostly to his belief that Hesperornis existed only in Kansas, so any species from Montana should be placed in a different genus. Most later researchers disagreed with this, and have placed Coniornis altus in the same genus as Hesperornis as H. altus. [24] [25] A second species from Montana has also been described from the Claggett Shale. H. montana was named by Shufeldt in 1915, and while its known material (a single dorsal vertebra) cannot be directly compared to H. altus, Shufeldt and others have considered it distinct due to its apparently smaller size. [26]

In 1993, the first Hesperornis remains from outside of North America were recognized as a new species by Nessov and Yarkov. They named Hesperornis rossicus for a fragmentary skeleton from the early Campanian of Russia near Volgograd. Several other specimens from contemporary deposits have since been referred to this species. At about 1.4 metres (4.6 ft) long, H. rossicus was the largest species of Hesperornis and among the largest hesperornithines, slightly smaller than the large Canadian genus Canadaga . [14] Aside from its large size and different geographic location, H. rossicus differs from other Hesperornis in several features of the lower leg and foot, including a highly flattened metatarsus. [27]

In 2002, Martin and Lim formally recognized several new species for remains that had previously been unstudied or referred without consideration to previously named North American hesperornithines. These include the very small H. mengeli and H. macdonaldi, the slightly larger H. bairdi, and the very large H. chowi, all from the Sharon Springs member of the Pierre Shale Formation in South Dakota and Alberta, 80.5 million years ago. [28]

In addition, there are some unassigned remains, such as SGU 3442 Ve02 and LO 9067t and bones of an undetermined species from Tzimlyanskoe Reservoir near Rostov. The former two bones are probably H. rossicus; some remains assigned to that species in turn seem to belong to the latter undetermined taxon. [29] It is also suggested that Hesperornis likely lived throughout the Campanian age based on remains found on middle to late Campanian age rocks, [1] and possibly even up to the early Maastrichtian age. [2]

Paleobiology

H. regalis skeleton in swimming pose; note feet pointing sideways Hesperornis regalis.jpg
H. regalis skeleton in swimming pose; note feet pointing sideways

Hesperornis was primarily marine, and lived in the waters of such contemporary shallow shelf seas as the Western Interior Seaway, the Turgai Strait, and the North Sea, [29] [2] which then were subtropical to tropical waters, much warmer than today. However, some of the youngest known specimens of Hesperornis have been found in inland freshwater deposits of the Foremost Formation, suggesting that some species of Hesperornis may have eventually moved, at least partially, away from a primarily marine habitat. Additionally, the species H. altus comes from the freshwater deposits at the base of the Judith River Formation. [30]

Traditionally, Hesperornis is depicted with a mode of locomotion similar to modern loons or grebes, and study of their limb proportions and hip structure has borne out this comparison. In terms of limb length, shape of the hip bones, and position of the hip socket, Hesperornis is particularly similar to the common loon (Gavia immer), probably exhibiting a very similar manner of locomotion on land and in water. Like loons, Hesperornis were probably excellent foot-propelled divers, but might have been ungainly on land. [31] Like loons, the legs were probably encased inside the body wall up to the ankle, causing the feet to jut out to the sides near the tail. This would have prevented them from bringing the legs underneath the body to stand, or under the center of gravity to walk. Instead, they likely moved on land by pushing themselves along on their bellies, like modern seals. [32] However, more recent studies on hesperornithean hindlimbs suggest they were more functionally similar to those of the still upright walking cormorants. [33]

Young Hesperornis grew fairly quickly and continuously to adulthood, as is the case in modern birds, but not Enantiornithes. [34]

Pathology

A Hesperornis leg bone uncovered in the 1960s was examined by David Burnham, Bruce Rothschild et al. and was found to bear bite marks from a young polycotylid plesiosaur (possibly a Dolichorhynchops or something similar). The Hesperornis's bone, specifically the condyle, shows signs of infection, indicating the bird survived the initial attack and escaped the predator. The discovery was published in the journal Cretaceous Research in 2016. [35]

Related Research Articles

<span class="mw-page-title-main">Hesperornithes</span> Extinct clade of aquatic avialans closely related to modern birds

Hesperornithes is an extinct and highly specialized group of aquatic avialans closely related to the ancestors of modern birds. They inhabited both marine and freshwater habitats in the Northern Hemisphere, and include genera such as Hesperornis, Parahesperornis, Baptornis, Enaliornis, and Potamornis, all strong-swimming, predatory divers. Many of the species most specialized for swimming were completely flightless. The largest known hesperornithean, Canadaga arctica, may have reached a maximum adult length of 2.2 metres (7.2 ft).

<i>Edmontosaurus</i> Hadrosaurid dinosaur genus from Late Cretaceous US and Canada

Edmontosaurus, with the second species often colloquially and historically known as Anatosaurus or Anatotitan, is a genus of hadrosaurid (duck-billed) dinosaur. It contains two known species: Edmontosaurus regalis and Edmontosaurus annectens. Fossils of E. regalis have been found in rocks of western North America that date from the late Campanian age of the Cretaceous period 73 million years ago, while those of E. annectens were found in the same geographic region from rocks dated to the end of the Maastrichtian age, 66 million years ago. Edmontosaurus was one of the last non-avian dinosaurs to ever exist, and lived alongside dinosaurs like Triceratops, Tyrannosaurus, Ankylosaurus, and Pachycephalosaurus shortly before the Cretaceous–Paleogene extinction event.

<i>Ichthyornis</i> Extinct genus of bird-like dinosaurs

Ichthyornis is an extinct genus of toothy seabird-like ornithuran from the late Cretaceous period of North America. Its fossil remains are known from the chalks of Alberta, Alabama, Kansas, New Mexico, Saskatchewan, and Texas, in strata that were laid down in the Western Interior Seaway during the Turonian through Campanian ages, about 95–83.5 million years ago. Ichthyornis is a common component of the Niobrara Formation fauna, and numerous specimens have been found.

<i>Struthiomimus</i> Extinct genus of reptile

Struthiomimus, meaning "ostrich-mimic", is a genus of ornithomimid dinosaurs from the late Cretaceous of North America. Ornithomimids were long-legged, bipedal, ostrich-like dinosaurs with toothless beaks. The type species, Struthiomimus altus, is one of the more common, smaller dinosaurs found in Dinosaur Provincial Park; their overall abundance—in addition to their toothless beak—suggests that these animals were mainly herbivorous or omnivorous, rather than purely carnivorous. Similar to the modern extant ostriches, emus, and rheas, ornithomimid dinosaurs likely lived as opportunistic omnivores, supplementing a largely plant-based diet with a variety of small mammals, reptiles, amphibians, insects, invertebrates, and anything else they could fit into their mouth, as they foraged.

Odontornithes is an obsolete and disused taxonomic term proposed by Othniel Charles Marsh for birds possessing teeth, notably the genera Hesperornis and Ichthyornis from the Cretaceous deposits of Kansas.

<span class="mw-page-title-main">UW–Madison Geology Museum</span> Natural history museum at the University of Wisconsin-Madison

The UW–Madison Geology Museum (UWGM) is a geology and paleontology museum housed in Weeks Hall, in the southwest part of the University of Wisconsin–Madison campus. The museum's main undertakings are exhibits, outreach to the public, and research. It has the second highest attendance of any museum at the University of Wisconsin–Madison, exceeded only by the Chazen Museum of Art. The museum charges no admission.

<i>Gansus</i> Extinct genus of dinosaurs

Gansus is a genus of aquatic birds that lived during the Aptian age of the Early Cretaceous (Aptian-Albian) period in what are now Gansu and Liaoning provinces, western China. The rock layers from which their fossils have been recovered are dated to 120 million years ago. It was first described in 1984 on the basis of an isolated left leg. It is the oldest-known member of the Ornithurae, the group which includes modern birds (Neornithes) and extinct related groups, such as Ichthyornis and Hesperornithes.

<span class="mw-page-title-main">Ichthyornithes</span> Extinct clade of dinosaurs

Ichthyornithes is an extinct group of toothed avialan dinosaurs very closely related to the common ancestor of all modern birds. They are known from fossil remains found throughout the late Cretaceous period of North America, though only two genera, Ichthyornis and Janavis, are represented by complete enough fossils to have been named. Ichthyornitheans became extinct at the Cretaceous–Paleogene boundary, along with enantiornitheans, all other non-avian dinosaurs, and many other animal and plant groups.

<i>Nyctosaurus</i> Genus of nyctosaurid pterosaur from the Late Cretaceous

Nyctosaurus is a genus of nyctosaurid pterosaur from the Late Cretaceous period of what is now the Niobrara Formation of the mid-western United States, which, during the time Nyctosaurus was alive, was covered in an extensive shallow sea. Some remains belonging to a possible Nyctosaurus species called N.lamegoi have been found in Brazil, making Nyctosaurus more diverse. The genus Nyctosaurus has had numerous species referred to it, though how many of these may actually be valid requires further study. At least one species possessed an extraordinarily large antler-like cranial crest.

<i>Baptornis</i> Extinct genus of flightless, aquatic birds

Baptornis is a genus of flightless, aquatic birds from the Late Cretaceous, some 87-80 million years ago. The fossils of Baptornis advenus, the type species, were discovered in Kansas, which at its time was mostly covered by the Western Interior Seaway, a shallow shelf sea. It is now known to have also occurred in today's Sweden, where the Turgai Strait joined the ancient North Sea; possibly, it occurred in the entire Holarctic.

Polarornis is a genus of prehistoric bird, possibly an anserimorph. It contains a single species Polarornis gregorii, known from incomplete remains of one individual found on Seymour Island, Antarctica, in rocks which are dated to the Late Cretaceous.

<span class="mw-page-title-main">Benjamin Franklin Mudge</span> American politician

Benjamin Franklin Mudge was an American lawyer, geologist and teacher. Briefly the mayor of Lynn, Massachusetts, he later moved to Kansas where he was appointed the first State Geologist. He led the first geological survey of the state in 1864, and published the first book on the geology of Kansas. He lectured extensively, and was department chair at the Kansas State Agricultural College.

<i>Edmontosaurus regalis</i> Extinct species of dinosaur

Edmontosaurus regalis is a species of comb-crested hadrosaurid dinosaur. Fossils of E. regalis have been found in rocks of western North America that date from the late Campanian age of the Cretaceous Period 73 million years ago, but it may have possibly lived into the early Maastrichtian.

<i>Apatornis</i> Extinct genus of dinosaurs

Apatornis is a genus of ornithuran dinosaurs endemic to North America during the late Cretaceous. It currently contains a single species, Apatornis celer, which lived around the Santonian-Campanian boundary, dated to about 83.5 million years ago. The remains of this species were found in the Smoky Hill Chalk of the Niobrara Formation in Kansas, United States. It is known from a single fossil specimen: a synsacrum, the fused series of vertebrae over the hips.

<i>Parahesperornis</i> Extinct genus of birds

Parahesperornis is a genus of prehistoric flightless birds from the Late Cretaceous. Its range in space and time may have been extensive, but its remains are rather few and far between, at least compared with its contemporary relatives in Hesperornis. Remains are known from central North America, namely the former shallows of the Western Interior Seaway in Kansas. Found only in the upper Niobrara Chalk, these are from around the Coniacian-Santonian boundary, 85–82 million years ago (mya).

Limenavis is a genus of ornithuran dinosaurs from the Late Cretaceous. It lived about 70 million years ago, around the Campanian-Maastrichtian boundary. Known from several broken bones, the remains of the only known species Limenavis patagonica were found in rocks of the "lower member" of the Allen Formation at Salitral Moreno, 20 km south of General Roca, Río Negro (Argentina). It is one of the closest relatives, in the fossil record, of the modern birds.

Canadaga is a flightless bird genus from the Late Cretaceous. The single known species is Canadaga arctica. It lived in the shallow seas around what today is Bylot and Devon Islands in Nunavut, Canada. Its fossils were found in rocks dated to the Campanian to mid-Maastrichtian age, about 67 million years ago.

<span class="mw-page-title-main">Appalachia (landmass)</span> Mesozoic land mass separated from Laramidia to the west by the Western Interior Seaway

During most of the Late Cretaceous the eastern half of North America formed Appalachia, an island land mass separated from Laramidia to the west by the Western Interior Seaway. This seaway had split North America into two massive landmasses due to a multitude of factors such as tectonism and sea-level fluctuations for nearly 40 million years. The seaway eventually expanded, divided across the Dakotas, and by the end of the Cretaceous, it retreated towards the Gulf of Mexico and the Hudson Bay. This left the island masses joined in the continent of North America as the Rocky Mountains rose. From the Cenomanian to the end of the Campanian ages of the Late Cretaceous, Appalachia was separated from the rest of North America. As the Western Interior Seaway retreated in the Maastrichtian, Laramidia and Appalachia eventually connected. Because of this, its fauna was isolated, and developed very differently from the tyrannosaur, ceratopsian, hadrosaurid, pachycephalosaur and ankylosaurid dominated fauna of the western part of North America, known as "Laramidia".

Iaceornis is a genus of marine ornithuran dinosaurs closely related to modern birds. It was endemic to North America during the Late Cretaceous, living about 83.5 million years ago. It is known from a single fossil specimen found in Gove County, Kansas (USA), and consisting of a partial skeleton lacking a skull.

<i>Tingmiatornis</i> Extinct genus of dinosaurs

Tingmiatornis is a genus of flighted and possibly diving ornithurine dinosaur from the High Arctic of Canada. The genus contains a single species, T. arctica, described in 2016, which lived during the Turonian epoch of the Cretaceous.

References

  1. 1 2 Alyssa Bell; Kelly J. Irwin; Leo Carson Davis (2015). "Hesperornithiform birds from the Late Cretaceous (Campanian) of Arkansas, USA". Transactions of the Kansas Academy of Science. 118 (3–4): 219–229. doi:10.1660/062.118.0305. JSTOR   24887762. S2CID   83921936.
  2. 1 2 3 Hills, L. V.; Nicholls, E. L.; Núñez-Betelu, L. "Koldo" M.; McIntyre, D. J. (1999). "Hesperornis (Aves) from Ellesmere Island and palynological correlation of known Canadian localities". Canadian Journal of Earth Sciences. 36 (9): 1583–1588. Bibcode:1999CaJES..36.1583H. doi:10.1139/e99-060. Archived from the original on 2007-03-11.
  3. 1 2 Perrins, Christopher (1987) [1979]. Harrison, C.J.O. (ed.). Birds: Their Lifes, Their Ways, Their World . Pleasantville, NY, US: Reader's Digest Association, Inc. pp.  165–166. ISBN   0895770652.
  4. Bell, A.; Chaippe, L.M. (2022). Buffetaut, E.; Angst, D. (eds.). "The Hesperornithiformes: A Review of the Diversity, Distribution, and Ecology of the Earliest Diving Birds". Diversity. 14 (4). 267. doi: 10.3390/d14040267 .
  5. Zelenitsky, Darla K.; Therrien, François; Ridgely, Ryan C.; McGee, Amanda R.; Witmer, Lawrence M. (13 April 2011). "Evolution of olfaction in non-avian theropod dinosaurs and birds". Proceedings of the Royal Society B: Biological Sciences. 278 (1725): 3625–3634. doi:10.1098/rspb.2011.0238. PMC   3203493 . PMID   21490022. Supplementary Material
  6. Stolpe, M (1935). "Colymbus, Hesperornis, Podiceps: ein Vergleich ihrer hinteren extremitat". Journal für Ornithologie. 83: 115–128. doi:10.1007/BF01908745. S2CID   11147804.
  7. Bell, Alyssa; Wu, Yun-Hsin; Chiappe, Luis (2019). "Morphometric comparison of the Hesperornithiformes and modern diving birds". Palaeogeography, Palaeoclimatology, Palaeoecology. 513: 196–207. Bibcode:2019PPP...513..196B. doi:10.1016/j.palaeo.2017.12.010. S2CID   133964417.
  8. Marsh, Othniel Charles (1880): Odontornithes, a Monograph on the Extinct Toothed Birds of North America. Government Printing Office, Washington DC.
  9. Gregory, Joseph T. (1952). "The Jaws of the Cretaceous Toothed Birds, Ichthyornis and Hesperornis" (PDF). Condor . 54 (2): 73–88. doi:10.2307/1364594. JSTOR   1364594.
  10. Heironymus, T.L.; Witmer, L.M. (2010). "Homology and evolution of avian compound rhamphothecae" (PDF). The Auk. 127 (3): 590–604. doi:10.1525/auk.2010.09122. S2CID   18430834. Archived from the original (PDF) on 2015-09-24. Retrieved 2013-03-25.
  11. Elzanowski, A. (1991). "New observations on the skull of Hesperornis with reconstructions of the bony palate and otic region". Postilla. 207: 1–20.
  12. Thomson, 191.
  13. Thomson, 193.
  14. 1 2 Holtz, Thomas R. Jr. (2011) Dinosaurs: The Most Complete, Up-to-Date Encyclopedia for Dinosaur Lovers of All Ages, Winter 2010 Appendix.
  15. Charles Schuchert and Clara Mae LeVene, O.C. Marsh: Pioneer in Paleontology, p. 427. New York: Arno Press, 1978. Later, Russell assisted Marsh while attending medical school; he became a surgeon, professor of Clinical Surgery in the Yale School of Medicine, and Marsh's personal physician until Marsh's death in 1899. See Proceedings of the Connecticut State Medical Society (Google eBook) and Genealogical and Family History of the State of Connecticut: A Record of the Achievements of Her People in the Making of a Commonwealth and the Founding of a Nation. Editorial staff: William Richard Cutter, Edward Henry Clement, Samuel Hart, Mary Kingsbury Talcott, Frederick Bostwick, Ezra Scollay Stearns. Volume I (of 4). New York: Lewis Historical Publishing Company, 1911.
  16. 1 2 Wallace, 86.
  17. Thomson, 226.
  18. Wallace, 87.
  19. Wallace, 132.
  20. Carpenter, K. (2008). Harries, P. J (ed.). High-Resolution Approaches in Stratigraphic Paleontology. Topics in Geobiology. Vol. 21. pp. 421–437. doi:10.1007/978-1-4020-9053-0. ISBN   978-1-4020-1443-7.
  21. Marsh, O.C. (1876). "Notice of new Odontornithes". The American Journal of Science and Arts. 11 (66): 509–511. Bibcode:1876AmJS...11..509M. doi:10.2475/ajs.s3-11.66.509. S2CID   131496417.
  22. Bell, A.; Everhart, M.J. (2009). "A new specimen of Parahesperornis (Aves: Hesperornithiformes) from the Smoky Hill Chalk (Early Campanian) of Western Kansas". Transactions of the Kansas Academy of Science. 112 (1/2): 7–14. doi:10.1660/062.112.0202. S2CID   86083098.
  23. Mortimer, Michael (2004): The Theropod Database: Phylogeny of taxa Archived 2013-05-16 at the Wayback Machine .
  24. Shufeldt, R.W. (1915). "Fossil birds in the Marsh Collection of Yale University". Transactions of the Connecticut Academy of Arts and Sciences. 19: 1–110.
  25. Martin, L.D. (1984). "A new hesperornithid and the relationships of the Mesozoic birds". Transactions of the Kansas Academy of Science. 87 (3/4): 141–150. doi:10.2307/3627850. JSTOR   3627850.
  26. Shufeldt, R.W. (1915). "The fossil remains of a species of Hesperornis found in Montana". The Auk. 32 (3): 290–294. doi:10.2307/4072679. JSTOR   4072679.
  27. Kurochkin, (2000). "Mesozoic birds of Mongolia and the former USSR." Pp. 533–559 in Benton, Shishkin, Unwin and Kurochkin (eds.). The Age of Dinosaurs in Russia and Mongolia.
  28. Martin, L. and Lim, (2002). "New information on the hesperornithiform radiation." pp. 113–124 in Zhou and Zhang (eds.), Proceedings of the 5th Symposium of the Society of Avian Paleontology and Evolution, Beijing.
  29. 1 2 Rees, Jan & Lindgren, Johan; Lindgren (2005). "Aquatic birds from the Upper Cretaceous (Lower Campanian) of Sweden and the biology and distribution of hesperornithiforms". Palaeontology . 48 (6): 1321–1329. Bibcode:2005Palgy..48.1321R. doi: 10.1111/j.1475-4983.2005.00507.x .{{cite journal}}: CS1 maint: multiple names: authors list (link)
  30. Fox, R.C. (1974). "A middle Campanian, nonmarine occurrence of the Cretaceous toothed bird Hesperornis Marsh". Canadian Journal of Earth Sciences. 11 (9): 1335–1338. Bibcode:1974CaJES..11.1335F. doi:10.1139/e74-127.
  31. Reynaud, F. (2006). "Hind limb and pelvis proportions of Hesperornis regalis: A comparison with extant diving birds". Journal of Vertebrate Paleontology. 26 (3): 115A. doi:10.1080/02724634.2006.10010069. S2CID   220413406.
  32. Larry D. Martin; Evgeny N. Kurochkin; Tim T. Tokaryk (2012). "A new evolutionary lineage of diving birds from the Late Cretaceous of North America and Asia". Palaeoworld . 21 (1): 59–63. doi:10.1016/j.palwor.2012.02.005.
  33. Bell, Alyssa; Wu, Yun-Hsin; Chiappe, Luis M. (2019). "Morphometric comparison of the Hesperornithiformes and modern diving birds". Palaeogeography, Palaeoclimatology, Palaeoecology. 513: 196–207. Bibcode:2019PPP...513..196B. doi:10.1016/j.palaeo.2017.12.010. S2CID   133964417.
  34. Chinsamy A, Martin, Larry D. & Dobson, P.; Martin; Dobson (1998). "Bone microstructure of the diving Hesperornis and the volant Ichthyornis from the Niobrara Chalk of western Kansas". Cretaceous Research. 19 (2): 225–235. Bibcode:1998CrRes..19..225C. doi: 10.1006/cres.1997.0102 .{{cite journal}}: CS1 maint: multiple names: authors list (link)
  35. "BBC Earth | Home".

Sources

Further reading