Hyperinsulinemic hypoglycemia

Last updated
Hyperinsulinemic hypoglycemia
Specialty Endocrinology

Hyperinsulinemic hypoglycemia describes the condition and effects of low blood glucose caused by excessive insulin. Hypoglycemia due to excess insulin is the most common type of serious hypoglycemia. It can be due to endogenous or injected insulin.

Contents

Signs and symptoms

Manifestations of hyperinsulinemic hypoglycemia vary by age and severity of the hypoglycemia. In general, most signs and symptoms can be attributed to (1) the effects on the brain of insufficient glucose (neuroglycopenia) or (2) to the adrenergic response of the autonomic nervous system to hypoglycemia. A few miscellaneous symptoms are harder to attribute to either of these causes. In most cases, all effects are reversed when normal glucose levels are restored.

There are uncommon cases of more persistent harm, and rarely even death due to severe hypoglycemia of this type. One reason hypoglycemia due to excessive insulin can be more dangerous is that insulin lowers the available amounts of most alternate brain fuels, such as ketones. Brain damage of various types ranging from stroke-like focal effects to impaired memory and thinking can occur. Children who have prolonged or recurrent hyperinsulinemic hypoglycemia in infancy can suffer harm to their brains and may be developmentally delayed.

Causes

Hypoglycemia due to endogenous insulin can be congenital or acquired, apparent in the newborn period, or many years later. The hypoglycemia can be severe and life-threatening or a minor, occasional nuisance. By far the most common type of severe but transient hyperinsulinemic hypoglycemia occurs accidentally in persons with type 1 diabetes who take insulin.

Genetics

There are several genetic forms of hyperinsulinemic hypoglycemia:

Type OMIM GeneLocus
HHF1 256450 ABCC8 11p15.1
HHF2 601820 KCNJ11 11p15.1
HHF3 602485 GCK 7p15-p13
HHF4 609975 HADH 4q22-q26
HHF5 609968 INSR 19p13.2
HHF6 606762 GLUD1 10q23.3
HHF7 610021 SLC16A1 1p13.2-p12

Diagnosis

When the cause of hypoglycemia is not obvious, the most valuable diagnostic information is obtained from a blood sample (a "critical specimen") drawn during the hypoglycemia. Detectable amounts of insulin are abnormal and indicate that hyperinsulinism is likely to be the cause. Other aspects of the person's metabolic state, especially low levels of free fatty acids, beta-hydroxybutyrate and ketones, and either high or low levels of C-peptide and proinsulin can provide confirmation.

Clinical features and circumstances can provide other indirect evidence of hyperinsulinism. For instance, babies with neonatal hyperinsulinism are often large for gestational age and may have other features such as enlarged heart and liver. Knowing that someone takes insulin or oral hypoglycemic agents for diabetes obviously makes insulin excess the presumptive cause of any hypoglycemia.

Most sulfonylureas and aspirin can be detected on a blood or urine drug screen tests, but insulin cannot. Endogenous and exogenous insulin can be distinguished by the presence or absence of C-peptide, a by-product of endogenous insulin secretion which is not present in pharmaceutical insulin. Some of the newer analog insulins are not measured by the usual insulin level assays.

Treatment

Acute hypoglycemia is reversed by raising the blood glucose. Glucagon should be injected intramuscularly or intravenously, or dextrose can be infused intravenously to raise the blood glucose. Oral administration of glucose can worsen the outcome, as more insulin is eventually produced. Most people recover fully even from severe hypoglycemia after the blood glucose is restored to normal. Recovery time varies from minutes to hours depending on the severity and duration of the hypoglycemia. Death or permanent brain damage resembling stroke can occur rarely as a result of severe hypoglycemia. See hypoglycemia for more on effects, recovery, and risks.

Further therapy and prevention depends upon the specific cause.

Most hypoglycemia due to excessive insulin occurs in people who take insulin for type 1 diabetes. Management of this hypoglycemia is sugar or starch by mouth (or in severe cases, an injection of glucagon or intravenous dextrose). When the glucose has been restored, recovery is usually complete. Prevention of further episodes consists of maintaining balance between insulin, food, and exercise. Management of hypoglycemia due to treatment of type 2 diabetes is similar, and the dose of the oral hypoglycemic agent may need to be reduced. Reversal and prevention of hypoglycemia is a major aspect of the management of type 1 diabetes.

Hypoglycemia due to drug overdose or effect is supported with extra glucose until the drugs have been metabolized. The drug doses or combination often needs to be altered.

Hypoglycemia due to a tumor of the pancreas or elsewhere is usually curable by surgical removal. Most of these tumors are benign. Streptozotocin is a specific beta cell toxin and has been used to treat insulin-producing pancreatic carcinoma.

Hyperinsulinism due to diffuse overactivity of beta cells, such as in many of the forms of congenital hyperinsulinism, and more rarely in adults, can often be treated with diazoxide or a somatostatin analog called octreotide. Diazoxide is given by mouth, octreotide by injection or continuous subcutaneous pump infusion. When congenital hyperinsulinism is due to focal defects of the insulin-secretion mechanism, surgical removal of that part of the pancreas may cure the problem. In more severe cases of persistent congenital hyperinsulinism unresponsive to drugs, a near-total pancreatectomy may be needed to prevent continuing hypoglycemia. Even after pancreatectomy, continuous glucose may be needed in the form of gastric infusion of formula or dextrose.

High dose glucocorticoid is an older treatment used for presumptive transient hyperinsulinism but incurs side effects with prolonged use.

See also

Related Research Articles

<span class="mw-page-title-main">Hypoglycemia</span> Health condition

Hypoglycemia, also called low blood sugar, is a fall in blood sugar to levels below normal, typically below 70 mg/dL (3.9 mmol/L). Whipple's triad is used to properly identify hypoglycemic episodes. It is defined as blood glucose below 70 mg/dL (3.9 mmol/L), symptoms associated with hypoglycemia, and resolution of symptoms when blood sugar returns to normal. Hypoglycemia may result in headache, tiredness, clumsiness, trouble talking, confusion, fast heart rate, sweating, shakiness, nervousness, hunger, loss of consciousness, seizures, or death. Symptoms typically come on quickly.

The following is a glossary of diabetes which explains terms connected with diabetes.

<span class="mw-page-title-main">Diabetic coma</span> Medical condition

Diabetic coma is a life-threatening but reversible form of coma found in people with diabetes mellitus.

<span class="mw-page-title-main">Insulinoma</span> Medical condition

An insulinoma is a tumour of the pancreas that is derived from beta cells and secretes insulin. It is a rare form of a neuroendocrine tumour. Most insulinomas are benign in that they grow exclusively at their origin within the pancreas, but a minority metastasize. Insulinomas are one of the functional pancreatic neuroendocrine tumour (PNET) group. In the Medical Subject Headings classification, insulinoma is the only subtype of "islet cell adenoma".

<span class="mw-page-title-main">Hyperinsulinism</span> Medical condition

Hyperinsulinism refers to an above normal level of insulin in the blood of a person or animal. Normal insulin secretion and blood levels are closely related to the level of glucose in the blood, so that a given level of insulin can be normal for one blood glucose level but low or high for another. Hyperinsulinism can be associated with several types of medical problems, which can be roughly divided into two broad and largely non-overlapping categories: those tending toward reduced sensitivity to insulin and high blood glucose levels (hyperglycemia), and those tending toward excessive insulin secretion and low glucose levels (hypoglycemia).

Nesidioblastosis is a controversial medical term for hyperinsulinemic hypoglycemia attributed to excessive insulin production by pancreatic beta cells that have an abnormal microscopic appearance. The term was coined in the first half of the 20th century. The abnormal microscopic features of the tissue included the presence of islet cell enlargement, pancreatic islet cell dysplasia, beta cells budding from ductal epithelium, and islets in close proximity to ducts.

<span class="mw-page-title-main">Congenital hyperinsulinism</span> Medical condition

Congenital hyperinsulinism (HI or CHI) is a rare condition causing severe hypoglycemia in newborns due to the overproduction of insulin. There are various causes of HI, some of which are known to be the result of a genetic mutation. Sometimes HI occurs on its own (isolated) and more rarely associated with other medical conditions.

<span class="mw-page-title-main">Hyperinsulinemia</span> Abnormal increase in insulin in the bloodstream relative to glucose

Hyperinsulinemia is a condition in which there are excess levels of insulin circulating in the blood relative to the level of glucose. While it is often mistaken for diabetes or hyperglycaemia, hyperinsulinemia can result from a variety of metabolic diseases and conditions, as well as non-nutritive sugars in the diet. While hyperinsulinemia is often seen in people with early stage type 2 diabetes mellitus, it is not the cause of the condition and is only one symptom of the disease. Type 1 diabetes only occurs when pancreatic beta-cell function is impaired. Hyperinsulinemia can be seen in a variety of conditions including diabetes mellitus type 2, in neonates and in drug-induced hyperinsulinemia. It can also occur in congenital hyperinsulinism, including nesidioblastosis.

<span class="mw-page-title-main">Diazoxide</span> Medication used to treat low blood sugar and high blood pressure

Diazoxide, sold under the brand name Proglycem and others, is a medication used to treat low blood sugar due to a number of specific causes. This includes islet cell tumors that cannot be removed and leucine sensitivity. It can also be used in refractory cases of sulfonylurea toxicity. It is generally taken by mouth.

<span class="mw-page-title-main">Diabetic hypoglycemia</span> Medical condition

Diabetic hypoglycemia is a low blood glucose level occurring in a person with diabetes mellitus. It is one of the most common types of hypoglycemia seen in emergency departments and hospitals. According to the National Electronic Injury Surveillance System-All Injury Program (NEISS-AIP), and based on a sample examined between 2004 and 2005, an estimated 55,819 cases involved insulin, and severe hypoglycemia is likely the single most common event.

<span class="mw-page-title-main">Reactive hypoglycemia</span> Medical condition

Reactive hypoglycemia, postprandial hypoglycemia, or sugar crash is a term describing recurrent episodes of symptomatic hypoglycemia occurring within four hours after a high carbohydrate meal in people with and without diabetes. The term is not necessarily a diagnosis since it requires an evaluation to determine the cause of the hypoglycemia.

<span class="mw-page-title-main">Glutamate dehydrogenase 1</span> Enzyme

GLUD1 is a mitochondrial matrix enzyme, one of the family of glutamate dehydrogenases that are ubiquitous in life, with a key role in nitrogen and glutamate (Glu) metabolism and energy homeostasis. This dehydrogenase is expressed at high levels in liver, brain, pancreas and kidney, but not in muscle. In the pancreatic cells, GLUD1 is thought to be involved in insulin secretion mechanisms. In nervous tissue, where glutamate is present in concentrations higher than in the other tissues, GLUD1 appears to function in both the synthesis and the catabolism of glutamate and perhaps in ammonia detoxification.

<span class="mw-page-title-main">Glucagon rescue</span>

Glucagon rescue is the emergency injection of glucagon in case of severe diabetic hypoglycemia. It is needed during seizures and/or unconsciousness by an insulin user who is unable at that point to help themselves. Glucagon will facilitate the release of stored glucose back into the bloodstream, raising the blood glucose level.

Seale Harris was an American physician and researcher born in Cedartown, Georgia. He was nicknamed "the Benjamin Franklin of Medicine" by contemporaries for his leadership and writing on a wide range of medical and political topics. Dr. Harris' most celebrated accomplishments were his 1924 hypothesis of hyperinsulinism as a cause of spontaneous hypoglycemia.

K<sub>ir</sub>6.2 Protein-coding gene in the species Homo sapiens

Kir6.2 is a major subunit of the ATP-sensitive K+ channel, a lipid-gated inward-rectifier potassium ion channel. The gene encoding the channel is called KCNJ11 and mutations in this gene are associated with congenital hyperinsulinism.

<span class="mw-page-title-main">ABCC8</span> Protein-coding gene in the species Homo sapiens

ATP-binding cassette transporter sub-family C member 8 is a protein that in humans is encoded by the ABCC8 gene. ABCC8 orthologs have been identified in all mammals for which complete genome data are available.

Permanent neonatal diabetes mellitus (PNDM) is a newly identified and potentially treatable form of monogenic diabetes. This type of neonatal diabetes is caused by activating mutations of the KCNJ11 gene, which codes for the Kir6.2 subunit of the beta cell KATP channel. This disease is considered to be a type of maturity onset diabetes of the young (MODY).

Neonatal hypoglycemia occurs when the neonate's blood glucose level is less than the newborn's body requirements for factors such as cellular energy and metabolism. There is inconsistency internationally for diagnostic thresholds. In the US, hypoglycemia is when the blood glucose level is below 30 mg/dL within the first 24 hours of life and below 45 mg/dL thereafter. In the UK, however, lower and more variable thresholds are used. The neonate's gestational age, birth weight, metabolic needs, and wellness state of the newborn has a substantial impact on the neonates blood glucose level. There are known risk factors that can be both maternal and neonatal. This is a treatable condition. Its treatment depends on the cause of the hypoglycemia. Though it is treatable, it can be fatal if gone undetected. Hypoglycemia is the most common metabolic problem in newborns.

Glucose-elevating agents are medications used to treat hypoglycemia by raising blood glucose. In diabetics, hypoglycemia can occur as a result of too much insulin or antidiabetic medication, insufficient food intake, or sudden increase in physical activity or exercise. The most common glucose-elevating agents used to treat diabetic hypoglycemia are glucose and glucagon injections when severe hypoglycemia occurs. Diazoxide, which is used to counter hypoglycemia in disease states such as insulinoma or congenital hyperinsulinism, increases blood glucose and decreases insulin secretion and glucagon accelerates breakdown of glycogen in the liver (glycogenolysis) to release glucose into the bloodstream.

References

  1. Villeneuve, MC; Ostlund RE, Jr; Baillargeon, JP (January 2009). "Hyperinsulinemia is closely related to low urinary clearance of D-chiro-inositol in men with a wide range of insulin sensitivity". Metabolism: Clinical and Experimental. 58 (1): 62–8. doi:10.1016/j.metabol.2008.08.007. PMID   19059532.