Jasmonic acid

Last updated
Jasmonic acid
Jasmonicacid.svg
Jasmonic acid molecule ball.png
Names
Preferred IUPAC name
{(1R,2R)-3-Oxo-2-[(2Z)-pent-2-en-1-yl]cyclopentyl}acetic acid
Other names
Jasmonic acid
(−)-Jasmonic acid
JA
(1R,2R)-3-Oxo-2-(2Z)-2-pentenylcyclopentylethanoic acid
{(1R,2R)-3-Oxo-2-[(2Z)-2-penten-1-yl]cyclopentyl}acetic acid
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
PubChem CID
UNII
  • InChI=1S/C12H18O3/c1-2-3-4-5-10-9(8-12(14)15)6-7-11(10)13/h3-4,9-10H,2,5-8H2,1H3,(H,14,15)/b4-3-/t9-,10-/m1/s1 X mark.svgN
    Key: ZNJFBWYDHIGLCU-HWKXXFMVSA-N X mark.svgN
  • InChI=1/C12H18O3/c1-2-3-4-5-10-9(8-12(14)15)6-7-11(10)13/h3-4,9-10H,2,5-8H2,1H3,(H,14,15)/b4-3-/t9-,10-/m1/s1
    Key: ZNJFBWYDHIGLCU-HWKXXFMVBZ
  • CC/C=C\C[C@@H]1[C@H](CCC1=O)CC(=O)O
Properties
C12H18O3
Molar mass 210.27 g/mol
Density 1.1 g/cm3
Boiling point 160 °C (320 °F; 433 K) at 0.7 mmHg
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Jasmonic acid (JA) is an organic compound found in several plants including jasmine. The molecule is a member of the jasmonate class of plant hormones. It is biosynthesized from linolenic acid by the octadecanoid pathway. It was first isolated in 1957 as the methyl ester of jasmonic acid by the Swiss chemist Édouard Demole and his colleagues. [1]

Contents

Biosynthesis

Its biosynthesis starts from the fatty acid linolenic acid, which is oxygenated by lipoxygenase (13-LOX), forming a hydroperoxide. This peroxide then cyclizes in the presence of allene oxide synthase to form an allene oxide. The rearrangement of allene oxide to form 12-oxophytodienoic acid is catalyzed by the enzyme allene oxide cyclase. A series of β-oxidations results in 7-isojasmonic acid. In the absence of enzyme, this isojasmonic acid isomerizes to jasmonic acid. [2]

Pathway for biosynthesis of jasmonic acid via allene oxide intermediate. Highlighted is the pentadiene core that is the site of the reactions. JasmonicAcidBiosyn.png
Pathway for biosynthesis of jasmonic acid via allene oxide intermediate. Highlighted is the pentadiene core that is the site of the reactions.

Function

The major function of JA and its various metabolites is regulating plant responses to abiotic and biotic stresses as well as plant growth and development. [3] Regulated plant growth and development processes include growth inhibition, senescence, tendril coiling, flower development and leaf abscission. JA is also responsible for tuber formation in potatoes and yams. It has an important role in response to wounding of plants and systemic acquired resistance. The Dgl gene is responsible for maintaining levels of JA during usual conditions in Zea mays as well as the preliminary release of jasmonic acid shortly after being fed upon. [4] When plants are attacked by insects, they respond by releasing JA, which activates the expression of protease inhibitors, among many other anti-herbivore defense compounds. These protease inhibitors prevent proteolytic activity of the insects' digestive proteases or "salivary proteins", [5] thereby stopping them from acquiring the needed nitrogen in the protein for their own growth. [6] JA also activates the expression of Polyphenol oxidase which promotes the production of quinolines. These can interfere with the insect's enzyme production and decrease the nutrition content of the ingested plant. [7]

JA may have a role in pest control. [8] Indeed, JA has been considered as a seed treatment in order to stimulate the natural anti-pest defenses of the plants that germinate from the treated seeds. In this application jasmonates are sprayed onto plants that have already started growing. [9] These applications stimulate the production of protease inhibitor in the plant. [10] This production of protease inhibitor can protect the plant from insects, decreasing infestation rates and physical damage sustained due to herbivores. [11] However, due to its antagonistic relationship with salicylic acid (an important signal in pathogen defense) in some plant species, it may result in an increased susceptibility to viral agents and other pathogens. [12] In Zea mays , salicylic acid and JA are mediated by NPR1 (nonexpressor of pathogenesis-related genes1), which is essential in preventing herbivores from exploiting this antagonistic system. [13] Armyworms ( Spodoptera caterpillars), through unknown mechanisms, are able to increase the activity of the salicylic acid pathway in maize, resulting in the depression of JA synthesis, but thanks to NPR1 mediation, JA levels aren't decreased by a significant amount. [13]

Derivatives

Jasmonic acid is also converted to a variety of derivatives including the ester methyl jasmonate. This conversion is catalyzed by the jasmonic acid carboxyl methyltransferase enzyme. [14] It can also be conjugated to amino acids in some biological contexts. Decarboxylation affords the related fragrance jasmone.

Related Research Articles

<span class="mw-page-title-main">Plant hormone</span> Chemical compounds that regulate plant growth and development

Plant hormones are signal molecules, produced within plants, that occur in extremely low concentrations. Plant hormones control all aspects of plant growth and development, including embryogenesis, the regulation of organ size, pathogen defense, stress tolerance and reproductive development. Unlike in animals each plant cell is capable of producing hormones. Went and Thimann coined the term "phytohormone" and used it in the title of their 1937 book.

<span class="mw-page-title-main">Jasmonate</span> Lipid-based plant hormones

Jasmonate (JA) and its derivatives are lipid-based plant hormones that regulate a wide range of processes in plants, ranging from growth and photosynthesis to reproductive development. In particular, JAs are critical for plant defense against herbivory and plant responses to poor environmental conditions and other kinds of abiotic and biotic challenges. Some JAs can also be released as volatile organic compounds (VOCs) to permit communication between plants in anticipation of mutual dangers.

<span class="mw-page-title-main">Cytochrome P450</span> Class of enzymes

{{cs1 config|name-list-style=vanc}

<span class="mw-page-title-main">Phytoalexin</span> Class of chemical compounds

Phytoalexins are antimicrobial substances, some of which are antioxidative as well. They are defined, not by their having any particular chemical structure or character, but by the fact that they are defensively synthesized de novo by plants that produce the compounds rapidly at sites of pathogen infection. In general phytoalexins are broad spectrum inhibitors; they are chemically diverse, and different chemical classes of compounds are characteristic of particular plant taxa. Phytoalexins tend to fall into several chemical classes, including terpenoids, glycosteroids, and alkaloids; however the term applies to any phytochemicals that are induced by microbial infection.

<span class="mw-page-title-main">Methyl jasmonate</span> Chemical compound

Methyl jasmonate is a volatile organic compound used in plant defense and many diverse developmental pathways such as seed germination, root growth, flowering, fruit ripening, and senescence. Methyl jasmonate is derived from jasmonic acid and the reaction is catalyzed by S-adenosyl-L-methionine:jasmonic acid carboxyl methyltransferase.

<span class="mw-page-title-main">Innate immune system</span> One of the two main immunity strategies

The innate, or nonspecific, immune system is one of the two main immunity strategies in vertebrates. The innate immune system is an alternate defense strategy and is the dominant immune system response found in plants, fungi, insects, and primitive multicellular organisms.

Systemic acquired resistance (SAR) is a "whole-plant" resistance response that occurs following an earlier localized exposure to a pathogen. SAR is analogous to the innate immune system found in animals, and although there are many shared aspects between the two systems, it is thought to be a result of convergent evolution. The systemic acquired resistance response is dependent on the plant hormone, salicylic acid.

<span class="mw-page-title-main">Systemin</span> Plant peptide hormone

Systemin is a plant peptide hormone involved in the wound response in the family Solanaceae. It was the first plant hormone that was proven to be a peptide having been isolated from tomato leaves in 1991 by a group led by Clarence A. Ryan. Since then, other peptides with similar functions have been identified in tomato and outside of the Solanaceae. Hydroxyproline-rich glycopeptides were found in tobacco in 2001 and AtPeps were found in Arabidopsis thaliana in 2006. Their precursors are found both in the cytoplasm and cell walls of plant cells, upon insect damage, the precursors are processed to produce one or more mature peptides. The receptor for systemin was first thought to be the same as the brassinolide receptor but this is now uncertain. The signal transduction processes that occur after the peptides bind are similar to the cytokine-mediated inflammatory immune response in animals. Early experiments showed that systemin travelled around the plant after insects had damaged the plant, activating systemic acquired resistance, now it is thought that it increases the production of jasmonic acid causing the same result. The main function of systemins is to coordinate defensive responses against insect herbivores but they also affect plant development. Systemin induces the production of protease inhibitors which protect against insect herbivores, other peptides activate defensins and modify root growth. They have also been shown to affect plants' responses to salt stress and UV radiation. AtPEPs have been shown to affect resistance against oomycetes and may allow A. thaliana to distinguish between different pathogens. In Nicotiana attenuata, some of the peptides have stopped being involved in defensive roles and instead affect flower morphology.

<span class="mw-page-title-main">Octadecanoid pathway</span>

The octadecanoid pathway is a biosynthetic pathway for the production of the phytohormone jasmonic acid (JA), an important hormone for induction of defense genes. JA is synthesized from alpha-linolenic acid, which can be released from the plasma membrane by certain lipase enzymes. For example, in the wound defense response, phospholipase C will cause the release of alpha-linolenic acid for JA synthesis.

<span class="mw-page-title-main">Leucyl aminopeptidase</span> Class of enzymes

Leucyl aminopeptidases are enzymes that preferentially catalyze the hydrolysis of leucine residues at the N-terminus of peptides and proteins. Other N-terminal residues can also be cleaved, however. LAPs have been found across superkingdoms. Identified LAPs include human LAP, bovine lens LAP, porcine LAP, Escherichia coli LAP, and the solanaceous-specific acidic LAP (LAP-A) in tomato.

<span class="mw-page-title-main">Allene oxide cyclase</span>

In enzymology, an allene-oxide cyclase is an enzyme that belongs to the family of isomerases, specifically a class of other intramolecular oxidoreductases. The systematic name of this enzyme class is (9Z)-(13S)-12,13-epoxyoctadeca-9,11,15-trienoate isomerase (cyclizing).

<span class="mw-page-title-main">Oxylipin</span> Class of lipids

Oxylipins constitute a family of oxygenated natural products which are formed from fatty acids by pathways involving at least one step of dioxygen-dependent oxidation. Oxylipins are derived from polyunsaturated fatty acids (PUFAs) by COX enzymes (cyclooxygenases), by LOX enzymes (lipoxygenases), or by cytochrome P450 epoxygenase.

Biotic stress is stress that occurs as a result of damage done to an organism by other living organisms, such as bacteria, viruses, fungi, parasites, beneficial and harmful insects, weeds, and cultivated or native plants. It is different from abiotic stress, which is the negative impact of non-living factors on the organisms such as temperature, sunlight, wind, salinity, flooding and drought. The types of biotic stresses imposed on an organism depend the climate where it lives as well as the species' ability to resist particular stresses. Biotic stress remains a broadly defined term and those who study it face many challenges, such as the greater difficulty in controlling biotic stresses in an experimental context compared to abiotic stress.

<span class="mw-page-title-main">Loline alkaloid</span> Class of chemical compounds

A loline alkaloid is a member of the 1-aminopyrrolizidines, which are bioactive natural products with several distinct biological and chemical features. The lolines are insecticidal and insect-deterrent compounds that are produced in grasses infected by endophytic fungal symbionts of the genus Epichloë. Lolines increase resistance of endophyte-infected grasses to insect herbivores, and may also protect the infected plants from environmental stresses such as drought and spatial competition. They are alkaloids, organic compounds containing basic nitrogen atoms. The basic chemical structure of the lolines comprises a saturated pyrrolizidine ring, a primary amine at the C-1 carbon, and an internal ether bridge—a hallmark feature of the lolines, which is uncommon in organic compounds—joining two distant ring carbons. Different substituents at the C-1 amine, such as methyl, formyl, and acetyl groups, yield loline species that have variable bioactivity against insects. Besides endophyte–grass symbionts, loline alkaloids have also been identified in some other plant species; namely, Adenocarpus species and Argyreia mollis.

In plant biology, elicitors are extrinsic or foreign molecules often associated with plant pests, diseases or synergistic organisms. Elicitor molecules can attach to special receptor proteins located on plant cell membranes. These receptors are able to recognize the molecular pattern of elicitors and trigger intracellular defence signalling via the octadecanoid pathway. This response results in the enhanced synthesis of metabolites which reduce damage and increase resistance to pest, disease or environmental stress. This is an immune response called pattern triggered immunity (PTI).

Induced systemic resistance (ISR) is a resistance mechanism in plants that is activated by infection. Its mode of action does not depend on direct killing or inhibition of the invading pathogen, but rather on increasing physical or chemical barrier of the host plant. Like the Systemic Acquired Resistance (SAR) a plant can develop defenses against an invader such as a pathogen or parasite if an infection takes place. In contrast to SAR which is triggered by the accumulation of salicylic acid, ISR instead relies on signal transduction pathways activated by jasmonate and ethylene.

<span class="mw-page-title-main">Allene oxide</span>

In organic chemistry, an allene oxide is an epoxide of an allene. The parent allene oxide is CH2=C(O)CH2 (CAS RN 40079-14-9), a rare and reactive species of only theoretical interest. Typical allene oxides require steric protection for their isolation. Certain derivatives can be prepared by epoxidation of the allenes with peracetic acid. Allene oxides tend to rearrange to cyclopropanones.

In plant biology, proteinase inhibitors are a family of small proteins that serve an integral role in the plant’s defense mechanisms against herbivory from insects or microorganisms that may compromise the integrity of the plant.

Plants are constantly exposed to different stresses that result in wounding. Plants have adapted to defend themselves against wounding events, like herbivore attacks or environmental stresses. There are many defense mechanisms that plants rely on to help fight off pathogens and subsequent infections. Wounding responses can be local, like the deposition of callose, and others are systemic, which involve a variety of hormones like jasmonic acid and abscisic acid.

Chemical defenses in <i>Cannabis</i> Defense of Cannabis plant from pathogens

Cannabis (/ˈkænəbɪs/) is commonly known as marijuana or hemp and has two known strains: Cannabis sativa and Cannabis indica, both of which produce chemicals to deter herbivory. The chemical composition includes specialized terpenes and cannabinoids, mainly tetrahydrocannabinol (THC), and cannabidiol (CBD). These substances play a role in defending the plant from pathogens including insects, fungi, viruses and bacteria. THC and CBD are stored mostly in the trichomes of the plant, and can cause psychological and physical impairment in the user, via the endocannabinoid system and unique receptors. THC increases dopamine levels in the brain, which attributes to the euphoric and relaxed feelings cannabis provides. As THC is a secondary metabolite, it poses no known effects towards plant development, growth, and reproduction. However, some studies show secondary metabolites such as cannabinoids, flavonoids, and terpenes are used as defense mechanisms against biotic and abiotic environmental stressors.

References

  1. Demole, E.; Lederer, E.; Mercier, D. (1962). "Isolement et determination de la structure du jasmonate de methyle, constituent odorant characteristique de l'essence de jasmin" [Isolation and determination of the structure of methyl jasmonate, the aromatic constituent characteristic of jasmine essential oil]. Helvetica Chimica Acta (in French). 45 (2): 675–685. doi:10.1002/hlca.19620450233.
  2. Dewick, Paul (2009). Medicinal Natural Products: A Biosynthetic Approach . United Kingdom: John Wiley & Sons. pp.  42–53. ISBN   978-0-470-74168-9.
  3. Delker, C.; Stenzel, I.; Hause, B.; Miersch, O.; Feussner, I.; Wasternack, C. (2006). "Jasmonate Biosynthesis in Arabidopsis thaliana – Enzymes, Products, Regulation". Plant Biology. 8 (3): 297–306. doi:10.1055/s-2006-923935. PMID   16807821.
  4. Gális, I.; Gaquerel, E.; Pandey, S. P.; Baldwin, I. N. T. (2009). "Molecular mechanisms underlying plant memory in JA-mediated defence responses". Plant, Cell & Environment. 32 (6): 617–627. doi: 10.1111/j.1365-3040.2008.01862.x . PMID   18657055.
  5. Lutz, Diana (2012). "Key part of plants' rapid response system revealed". Washington University in St. Louis.
  6. Zavala, J. A.; Patankar, A. G.; Gase, K.; Hui, D.; Baldwin, I. T. (2004). "Manipulation of Endogenous Trypsin Proteinase Inhibitor Production in Nicotiana attenuata Demonstrates Their Function as Antiherbivore Defenses". Plant Physiology. 134 (3): 1181–1190. doi:10.1104/pp.103.035634. PMC   389942 . PMID   14976235.
  7. The Effects of Bacterial and Jasmonic Acid Treatments on Insects of Canola. 2008.
  8. "Success for plants' pest control". BBC News. 2008-10-07. Retrieved 2010-05-05.
  9. Worrall, D.; Holroyd, G. H.; Moore, J. P.; Glowacz, M.; Croft, P.; Taylor, J. E.; Paul, N. D.; Roberts, M. R. (2012). "Treating seeds with activators of plant defence generates long-lasting priming of resistance to pests and pathogens" (PDF). New Phytologist. 193 (3): 770–778. doi: 10.1111/j.1469-8137.2011.03987.x . PMID   22142268.
  10. Farmer, E. E.; Johnson, R. R.; Ryan, C. A. (March 1992). "Regulation of expression of proteinase inhibitor genes by methyl jasmonate and jasmonic Acid". Plant Physiology. 98 (3): 995–1002. doi:10.1104/pp.98.3.995. ISSN   0032-0889. PMC   1080300 . PMID   16668777.
  11. Fouad, Hany Ahmed; El-Gepaly, Hosam Mohamed Khalil Hammam; Fouad, Osama Ahmed (2016-08-26). "Nanosilica and jasmonic acid as alternative methods for control Tuta absoluta (Meyrick) in tomato crop under field conditions". Archives of Phytopathology and Plant Protection. 49 (13–14): 362–370. doi:10.1080/03235408.2016.1219446. ISSN   0323-5408. S2CID   89119004.
  12. Lyons, R.; Manners, J. M.; Kazan, K. (2013). "Jasmonate biosynthesis and signaling in monocots: A comparative overview". Plant Cell Reports. 32 (6): 815–27. doi:10.1007/s00299-013-1400-y. PMID   23455708. S2CID   10778582.
  13. 1 2 Ballaré, Carlos L. (2011). "Jasmonate-induced defenses: A tale of intelligence, collaborators and rascals". Trends in Plant Science. 16 (5): 249–57. doi: 10.1016/j.tplants.2010.12.001 . hdl: 11336/97245 . PMID   21216178.
  14. Seo, H.-S.; Song, J.-T.; Cheong, J.-J.; Lee, Y.-H.; Lee, Y.-W.; Hwang, I.; Lee, J.-S.; Choi, Y.-D. (2001-04-10). "Jasmonic acid carboxyl methyltransferase: a key enzyme for jasmonate-regulated plant responses". Proceedings of the National Academy of Sciences. 98 (8): 4788–4793. Bibcode:2001PNAS...98.4788S. doi: 10.1073/pnas.081557298 . ISSN   0027-8424. PMC   31912 . PMID   11287667.