Kepler-80

Last updated
Kepler-80
Observation data
Epoch J2000       Equinox J2000
Constellation Cygnus
Right ascension 19h 44m 27.0201s [1]
Declination 39° 58 43.594 [1]
Apparent magnitude  (V)14.804
Characteristics
Spectral type M0V [2]
Variable type planetary transit
Astrometry
Proper motion (μ)RA: −1.373(20)  mas/yr [1]
Dec.: −7.207(24)  mas/yr [1]
Parallax (π)2.6675 ± 0.0183  mas [1]
Distance 1,223 ± 8  ly
(375 ± 3  pc)
Details
Mass 0.730  M
Radius 0.678  R
Luminosity 0.170  L
Temperature 4540  K
Metallicity [Fe/H]−0.56 [3]   dex
Rotation 25.567±0.252 days [4]
Other designations
KOI-500, KIC  4852528, 2MASS J19442701+3958436 [2]
Database references
SIMBAD data
KIC data

Kepler-80, also known as KOI-500, is a red dwarf star of the spectral type M0V. [2] This stellar classification places Kepler-80 among the very common, cool, class M stars that are still within their main evolutionary stage, known as the main sequence. Kepler-80, like other red dwarf stars, is smaller than the Sun, and it has both radius, mass, temperatures, and luminosity lower than that of our own star. [5] Kepler-80 is found approximately 1,223 light years from the Solar System, in the stellar constellation Cygnus, also known as the Swan.

Contents

The Kepler-80 system has 6 known exoplanets. [6] [7] The discovery of the five inner planets was announced in October 2012, marking Kepler-80 as the first star identified with five orbiting planets. [8] [5] In 2017, an additional planet, Kepler-80g, was discovered by use of artificial intelligence and deep learning to analyse data from the Kepler space telescope. [7] The method used to discover Kepler-80g had been developed by Google, and during the same study another planet was found, Kepler-90i, which brought the total number of known planets in Kepler-90 up to 8 planets. [9]

Planetary system

The exoplanets around Kepler-80 were discovered and observed using the Kepler Space Telescope. This telescope uses the so called transit method , where the planets move in between the star and the Earth and thereby dim the light of the star as seen from the Earth. By using photometry the transit of a planet in front of its star can be seen as a dip in the light curve of the star. After the initial discovery the five innermost planets have all been confirmed through additional investigations. Kepler-80b and Kepler-80c were both confirmed in 2013 based on their transit-timing variation (TTV). [10] Kepler-80d and Kepler-80e were validated in 2014 based on statistical analysis of the Kepler data. [11] [12] Finally the innermost planet, Kepler-80f was confirmed in 2016. [12]

All six known planets in the Kepler-80 system orbit very close to the star, and their distances to the star (the semi-major axes are all smaller than 0.2 AU). For comparison the planet in the Solar System closest to the star, Mercury, has a semi major axis of 0.389 AU, and so the entire known system of Kepler-80 can lie within the orbit of Mercury. [13] This makes Kepler-80 a very compact system and it is one of many STIP's (Systems with Tightly-packed Inner Planets) that have been discovered by the Kepler telescope. [8]

In 2014, the dynamical simulation shown what the Kepler-80 planetary system have likely to undergone a substantial inward migration in the past, producing an observed pattern of lower-mass planets on tightest orbits. [14]

The Kepler-80 planetary system [3] [7] [15] [16] [17]
Companion
(in order from star)
Mass Semimajor axis
(AU)
Orbital period
(days)
Eccentricity Inclination Radius
f0.0175 ± 0.00020.98678730 ± 0.00000006~086.50 +2.36
2.59
°
1.031+0.033
0.027
[18]   R🜨
d4.1 ± 0.4 [19]   M🜨 0.0372 ± 0.0005 [18] 3.07221 ± 0.000030.005+0.004
0.003
[19]
88.35 +1.12
1.51
[18] °
1.309+0.036
0.032
[18]   R🜨
e2.2 ± 0.4 [19]   M🜨 0.0491 ± 0.0007 [18] 4.6453 +0.00010
0.00009
[19]
0.008 ± 0.004 [19] 88.79 +0.84
1.07
[18] °
1.330+0.039
0.038
[18]   R🜨
b2.4 ± 0.6 [19]   M🜨 0.0658 ± 0.0009 [18] 7.05325 ± 0.00009 [19] 0.006 +0.005
0.004
[19]
89.34 +0.46
0.62
[18] °
2.367+0.055
0.052
[18]   R🜨
c3.4+0.9
0.7
[19]   M🜨
0.0792 ± 0.0011 [18] 9.5232 ± 0.0002 [19] 0.010 +0.006
0.005
[19]
89.33 +0.47
0.57
[18] °
2.507+0.061
0.058
[18]   R🜨
g1.0 ± 0.3 [19]   M🜨 0.142 +0.037
0.051
[18]
14.6471 +0.0007
0.0012
[19]
0.02 +0.03
0.02
[19]
89.35 +0.47
0.98
[18] °
1.05+0.22
0.24
[18]   R🜨

Orbital resonance

The system Kepler-80 has orbits locked in a trio of three-body mean-motion orbital resonances; between Kepler-80 d, e, and b; between Kepler-80 e, b, and c; and between Kepler-80 b, c, and g. Interestingly, no two-body resonances have been found to exist in this system. [19]

While Kepler-80 d, e, b, c and g's periods are in a ~ 1.000: 1.512: 2.296: 3.100: 4.767 ratio, in a frame of reference that rotates with the conjunctions this reduces to a ratio of 4:6:9:12:18. Conjunctions of d and e, e and b, b and c, and c and g occur at relative intervals of 2:3:6:6 in a pattern that repeats about every 191 days. Modeling indicates the resonant system is stable to perturbations. Triple conjunctions do not occur. [7] [15]

Related Research Articles

The Hungarian Automated Telescope Network (HATNet) project is a network of six small fully automated "HAT" telescopes. The scientific goal of the project is to detect and characterize extrasolar planets using the transit method. This network is used also to find and follow bright variable stars. The network is maintained by the Center for Astrophysics | Harvard & Smithsonian.

Kepler-32 is an M-type main sequence star located about 1070 light years from Earth, in the constellation of Cygnus. Discovered in January 2012 by the Kepler spacecraft, it shows a 0.58 ± 0.05 solar mass (M), a 0.53 ± 0.04 solar radius (R), and temperature of 3900.0 K, making it half the mass and radius of the Sun, two-thirds its temperature and 5% its luminosity.

Kepler-65 is a subgiant star slightly more massive than the Sun and has at least four planets.

<span class="mw-page-title-main">Kepler-90</span> Star in the constellation Draco, orbited by eight planets

Kepler-90, also designated 2MASS J18574403+4918185, is a F-type star located about 2,790 light-years (855 pc) from Earth in the constellation of Draco. It is notable for possessing a planetary system that has the same number of observed planets as the Solar System.

Kepler-88 is a G-type star 1,230 light-years away in the constellation of Lyra, with three confirmed exoplanets. SIMBAD lists a subgiant spectral type of G8IV, while other sources give it a main sequence spectral type of G6V. The latter is more consistent with its properties.

Kepler-23 is a star in the northern constellation of Cygnus, the swan. It is orbited by three known exoplanets. With an apparent visual magnitude of 14.0, this star is too faint to be seen with the naked eye.

<span class="mw-page-title-main">Kepler-25</span> Yellow-white hued star in the constellation Lyra

Kepler-25 is a star in the northern constellation of Lyra. It is slightly larger and more massive than the Sun, with a luminosity 212 times that of the Sun. With an apparent visual magnitude of 10.6, this star is too faint to be seen with the naked eye.

<span class="mw-page-title-main">Kepler-26</span> Star in the constellation Lyra

Kepler-26 is a star in the northern constellation of Lyra. It is located at the celestial coordinates: Right Ascension 18h 59m 45.8407s Declination +46° 33′ 59.438″. With an apparent visual magnitude of 15.5, this star is too faint to be seen with the naked eye.

<span class="mw-page-title-main">Kepler-138</span> Red dwarf in the constellation Lyra

Kepler-138, also known as KOI-314, is a red dwarf located in the constellation Lyra, 219 light years from Earth. It is located within the field of vision of the Kepler spacecraft, the satellite that NASA's Kepler Mission used to detect planets transiting their stars.

Kepler-30 is a star in the northern constellation of Lyra. It is located at the celestial coordinates: Right Ascension 19h 01m 08.0747s Declination +38° 56′ 50.219″. With an apparent visual magnitude of 15.5, this star is too faint to be seen with the naked eye. Kepler-30 is exhibiting a strong starspot activity.

Kepler-296f is a confirmed super-Earth exoplanet orbiting within the habitable zone of Kepler-296. The planet was discovered by NASA's Kepler spacecraft using the transit method, in which the dimming effect that a planet causes as it crosses in front of its star is measured. NASA announced the discovery of the exoplanet on 26 February 2014.

Kepler-26e is an exoplanet orbiting the star Kepler-26, located in the constellation Lyra. It was discovered by the Kepler telescope in February 2014. It orbits its parent star at only 0.220 astronomical units and completes an orbit once every 46.8 days. It is potentially habitable.

Kepler-160 is a main-sequence star approximately the width of our Galactic arm away in the constellation Lyra, first studied in detail by the Kepler Mission, a NASA-led operation tasked with discovering terrestrial planets. The star, which is very similar to the Sun in mass and radius, has three confirmed planets and one unconfirmed planet orbiting it.

Kepler-167 is a K-type main-sequence star located about 1,119 light-years (343 pc) away from the Solar System in the constellation of Cygnus. The star has about 78% the mass and 75% the radius of the Sun, and a temperature of 4,884 K. It hosts a system of four known exoplanets. There is also a companion red dwarf star at a separation of about 700 AU, with an estimated orbital period of over 15,000 years.

References

  1. 1 2 3 4 5 Vallenari, A.; et al. (Gaia collaboration) (2023). "Gaia Data Release 3. Summary of the content and survey properties". Astronomy and Astrophysics. 674: A1. arXiv: 2208.00211 . Bibcode:2023A&A...674A...1G. doi: 10.1051/0004-6361/202243940 . S2CID   244398875. Gaia DR3 record for this source at VizieR.
  2. 1 2 3 "Kepler-80". SIMBAD . Centre de données astronomiques de Strasbourg . Retrieved 2023-03-01.
  3. 1 2 "OASIS". Abstractsonline.com. Retrieved 2012-11-22.
  4. McQuillan, A.; Mazeh, T.; Aigrain, S. (2013). "Stellar Rotation Periods of The Kepler objects of Interest: A Dearth of Close-In Planets Around Fast Rotators". The Astrophysical Journal Letters. 775 (1). L11. arXiv: 1308.1845 . Bibcode:2013ApJ...775L..11M. doi:10.1088/2041-8205/775/1/L11. S2CID   118557681.
  5. 1 2 MacDonald, Mariah G.; Ragozzine, Darin; Fabrycky, Daniel C.; Ford, Eric B.; Holman, Matthew J.; Isaacson, Howard T.; Lissauer, Jack J.; Lopez, Eric D.; Mazeh, Tsevi (October 2016). "A Dynamical Analysis of the Kepler-80 System of Five Transiting Planets". The Astronomical Journal. 152 (4): 105. arXiv: 1607.07540 . Bibcode:2016AJ....152..105M. doi: 10.3847/0004-6256/152/4/105 . ISSN   1538-3881. S2CID   119265122.
  6. Xie, J.-W. (2013). "Transit timing variation of near-resonance planetary pairs: confirmation of 12 multiple-planet systems". Astrophysical Journal Supplement Series. 208 (2): 22. arXiv: 1208.3312 . Bibcode:2013ApJS..208...22X. doi:10.1088/0067-0049/208/2/22. S2CID   17160267.
  7. 1 2 3 4 Shallue, C. J.; Vanderburg, A. (2017). "Identifying Exoplanets With Deep Learning: A Five Planet Resonant Chain Around Kepler-80 And An Eighth Planet Around Kepler-90" (PDF). The Astrophysical Journal . 155 (2): 94. arXiv: 1712.05044 . Bibcode:2018AJ....155...94S. doi: 10.3847/1538-3881/aa9e09 . S2CID   4535051 . Retrieved 2017-12-15.
  8. 1 2 Ragozzine, Darin; Kepler Team (2012-10-01). "The Very Compact Five Exoplanet System KOI-500: Mass Constraints from TTVs, Resonances, and Implications". AAS/Division for Planetary Sciences Meeting Abstracts #44. 44: 200.04. Bibcode:2012DPS....4420004R.
  9. St. Fleur, Nicholas (14 December 2017). "An 8th Planet Is Found Orbiting a Distant Star, With A.I.'s Help". The New York Times . Retrieved 15 December 2017.
  10. Xie, Ji-Wei; Wu, Yanqin; Lithwick, Yoram (2014-06-25). "Frequency of Close Companions Amongkeplerplanets—A Transit Time Variation Study". The Astrophysical Journal. 789 (2): 165. arXiv: 1308.3751 . Bibcode:2014ApJ...789..165X. doi:10.1088/0004-637x/789/2/165. ISSN   0004-637X. S2CID   7024042.
  11. Lissauer, Jack J.; Marcy, Geoffrey W.; Bryson, Stephen T.; Rowe, Jason F.; Jontof-Hutter, Daniel; Agol, Eric; Borucki, William J.; Carter, Joshua A.; Ford, Eric B. (2014-03-04). "Validation Ofkepler's Multiple Planet Candidates. Ii. Refined Statistical Framework and Descriptions of Systems of Special Interest". The Astrophysical Journal. 784 (1): 44. arXiv: 1402.6352 . Bibcode:2014ApJ...784...44L. doi:10.1088/0004-637x/784/1/44. ISSN   0004-637X. S2CID   119108651.
  12. 1 2 Rowe, Jason F.; Bryson, Stephen T.; Marcy, Geoffrey W.; Lissauer, Jack J.; Jontof-Hutter, Daniel; Mullally, Fergal; Gilliland, Ronald L.; Issacson, Howard; Ford, Eric (2014-03-04). "Validation Ofkepler's Multiple Planet Candidates. III. Light Curve Analysis and Announcement of Hundreds of New Multi-Planet Systems". The Astrophysical Journal. 784 (1): 45. arXiv: 1402.6534 . Bibcode:2014ApJ...784...45R. doi:10.1088/0004-637x/784/1/45. ISSN   0004-637X. S2CID   119118620.
  13. "Mercury Fact Sheet". nssdc.gsfc.nasa.gov. Retrieved 2019-04-14.
  14. T. O. Hands, R. D. Alexander, W. Dehnen, "Understanding the assembly of Kepler's compact planetary systems", 2014
  15. 1 2 MacDonald, Mariah G.; Ragozzine, Darin; Fabrycky, Daniel C.; Ford, Eric B.; Holman, Matthew J.; Isaacson, Howard T.; Lissauer, Jack J.; Lopez, Eric D.; Mazeh, Tsevi (2016-01-01). "A Dynamical Analysis of the Kepler-80 System of Five Transiting Planets". The Astronomical Journal. 152 (4): 105. arXiv: 1607.07540 . Bibcode:2016AJ....152..105M. doi: 10.3847/0004-6256/152/4/105 . S2CID   119265122.
  16. "Kepler-80 g". NASA Exoplanet Archive. Retrieved 14 December 2017.
  17. "Kepler-80". NASA Exoplanet Archive. Retrieved May 9, 2018.
  18. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 MacDonald, Mariah G.; Shakespeare, Cody J.; Ragozzine, Darin (2021), "A Five-Planet Resonant Chain: Reevaluation of the Kepler-80 System", The Astronomical Journal, 162 (3): 114, arXiv: 2107.05597 , Bibcode:2021AJ....162..114M, doi: 10.3847/1538-3881/ac12d5 , S2CID   235795313
  19. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Weisserman, Drew; Becker, Juliette; Vanderburg, Andrew (2023), "Kepler-80 Revisited: Assessing the Participation of a Newly Discovered Planet in the Resonant Chain", The Astronomical Journal, 165 (3): 89, arXiv: 2212.08695 , Bibcode:2023AJ....165...89W, doi: 10.3847/1538-3881/acac80