Magnetopause

Last updated

Artistic rendition of the Earth's magnetopause. The magnetopause is where the pressure from the solar wind and the planet's magnetic field are equal. The position of the Sun would be far to the left in this image. Magnetopause.jpg
Artistic rendition of the Earth's magnetopause. The magnetopause is where the pressure from the solar wind and the planet's magnetic field are equal. The position of the Sun would be far to the left in this image.

The magnetopause is the abrupt boundary between a magnetosphere and the surrounding plasma. For planetary science, the magnetopause is the boundary between the planet's magnetic field and the solar wind. The location of the magnetopause is determined by the balance between the pressure of the dynamic planetary magnetic field and the dynamic pressure of the solar wind. As the solar wind pressure increases and decreases, the magnetopause moves inward and outward in response. Waves (ripples and flapping motion) along the magnetopause move in the direction of the solar wind flow in response to small-scale variations in the solar wind pressure and to Kelvin–Helmholtz instability.

Contents

The solar wind is supersonic and passes through a bow shock where the direction of flow is changed so that most of the solar wind plasma is deflected to either side of the magnetopause, much like water is deflected before the bow of a ship. The zone of shocked solar wind plasma is the magnetosheath. At Earth and all the other planets with intrinsic magnetic fields, some solar wind plasma succeeds in entering and becoming trapped within the magnetosphere. At Earth, the solar wind plasma which enters the magnetosphere forms the plasma sheet. The amount of solar wind plasma and energy that enters the magnetosphere is regulated by the orientation of the interplanetary magnetic field, which is embedded in the solar wind.

The Sun and other stars with magnetic fields and stellar winds have a solar magnetopause or heliopause where the stellar environment is bounded by the interstellar environment.

Characteristics

Schematic representation of a planetary dipole magnetic field in a vacuum (right side) deformed by a region of plasma with infinite conductivity. The Sun is to the left. The configuration is equivalent to an image dipole (green arrow) being placed at twice the distance from the planetary dipole to the interaction boundary. Dipole-and-image-dipole.png
Schematic representation of a planetary dipole magnetic field in a vacuum (right side) deformed by a region of plasma with infinite conductivity. The Sun is to the left. The configuration is equivalent to an image dipole (green arrow) being placed at twice the distance from the planetary dipole to the interaction boundary.

Prior to the age of space exploration, interplanetary space was considered to be a vacuum. The coincidence of the first observation of a solar flare and the geomagnetic storm of 1859 was evidence that plasma was ejected from the Sun during the flare event. Chapman and Ferraro [2] [3] [4] [5] proposed that a plasma was emitted by the Sun in a burst as part of a flare event which disturbed the planet's magnetic field in a manner known as a geomagnetic storm. The collision frequency of particles in the plasma in the interplanetary medium is very low and the electrical conductivity is so high that it could be approximated to an infinite conductor. A magnetic field in a vacuum cannot penetrate a volume with infinite conductivity. Chapman and Bartels (1940) [1] illustrated this concept by postulating a plate with infinite conductivity placed on the dayside of a planet's dipole as shown in the schematic. The field lines on the dayside are bent. At low latitudes, the magnetic field lines are pushed inward. At high latitudes, the magnetic field lines are pushed backwards and over the polar regions. The boundary between the region dominated by the planet's magnetic field (i.e., the magnetosphere) and the plasma in the interplanetary medium is the magnetopause. The configuration equivalent to a flat, infinitely conductive plate is achieved by placing an image dipole (green arrow at left of schematic) at twice the distance from the planet's dipole to the magnetopause along the planet-Sun line. Since the solar wind is continuously flowing outward, the magnetopause above, below and to the sides of the planet are swept backward into the geomagnetic tail as shown in the artist's concept. The region (shown in pink in the schematic) which separates field lines from the planet which are pushed inward from those which are pushed backward over the poles is an area of weak magnetic field or day-side cusp. Solar wind particles can enter the planet's magnetosphere through the cusp region. Because the solar wind exists at all times and not just times of solar flares, the magnetopause is a permanent feature of the space near any planet with a magnetic field.

The magnetic field lines of the planet's magnetic field are not stationary. They are continuously joining or merging with magnetic field lines of the interplanetary magnetic field. The joined field lines are swept back over the poles into the planetary magnetic tail. In the tail, the field lines from the planet's magnetic field are re-joined and start moving toward night-side of the planet. The physics of this process was first explained by Dungey (1961). [6]

If one assumed that magnetopause was just a boundary between a magnetic field in a vacuum and a plasma with a weak magnetic field embedded in it, then the magnetopause would be defined by electrons and ions penetrating one gyroradius into the magnetic field domain. Since the gyro-motion of electrons and ions is in opposite directions, an electric current flows along the boundary. The actual magnetopause is much more complex. [7]

Estimating the standoff distance to the magnetopause

If the pressure from particles within the magnetosphere is neglected, it is possible to estimate the distance to the part of the magnetosphere that faces the Sun. The condition governing this position is that the dynamic ram pressure from the solar wind is equal to the magnetic pressure from the Earth's magnetic field: [note 1]

where and are the density and velocity of the solar wind, and B(r) is the magnetic field strength of the planet in SI units (B in T, μ0 in H/m).

Since the dipole magnetic field strength varies with distance as the magnetic field strength can be written as , where is the planet's magnetic moment, expressed in .

Solving this equation for r leads to an estimate of the distance

The distance from Earth to the subsolar magnetopause varies over time due to solar activity, but typical distances range from 6–15 R. Empirical models [8] [9] using real-time solar wind data can provide a real-time estimate of the magnetopause location. A bow shock stands upstream from the magnetopause. It serves to decelerate and deflect the solar wind flow before it reaches the magnetopause. [10]

Solar System magnetopauses

Overview of the Solar System magnetopauses [11]
PlanetNumberMagnetic moment [note 2] Magnetopause distance [note 3] Observed size of the magnetosphere [note 4] variance of magnetosphere [note 5]
Mercury symbol (fixed width).svg Mercury 10.00041.51.40
Venus symbol (fixed width).svg Venus 20000
Earth symbol (fixed width).svg Earth3110102
Mars symbol (fixed width).svg Mars 40000
Jupiter symbol (fixed width).svg Jupiter 520000427525
Saturn symbol (fixed width).svg Saturn 660019193
Uranus symbol (fixed width).svg Uranus 75025180
Neptune symbol (fixed width).svg Neptune 8252424.51.5

Research on the magnetopause is conducted using the LMN coordinate system (which is set of axes like XYZ). N points normal to the magnetopause outward to the magnetosheath, L lies along the projection of the dipole axis onto the magnetopause (positive northward), and M completes the triad by pointing dawnward.

Venus and Mars do not have a planetary magnetic field and do not have a magnetopause. The solar wind interacts with the planet's atmosphere [12] and a void is created behind the planet. In the case of the Earth's moon and other bodies without a magnetic field or atmosphere, the body's surface interacts with the solar wind and a void is created behind the body.

See also

Notes

  1. The reason for the factor of 4 is because the magnetic field strength just inside the magnetopause is twice the dipole value for a planar magnetopause
  2. compared to Earth's magnetic moment (7.906 x 1031 gauss m3)
  3. typical distance between magnetopause and magnetosphere in planet radii
  4. in planet radii
  5. in planet radii, the magnetosphere varies mainly in response to solar wind dynamic pressure and interplanetary magnetic field orientation

Related Research Articles

<span class="mw-page-title-main">Magnetosphere</span> Region around an astronomical object in which its magnetic field affects charged particles

In astronomy and planetary science, a magnetosphere is a region of space surrounding an astronomical object in which charged particles are affected by that object's magnetic field. It is created by a celestial body with an active interior dynamo.

<span class="mw-page-title-main">Solar wind</span> Stream of charged particles from the Sun

The solar wind is a stream of charged particles released from the upper atmosphere of the Sun, called the corona. This plasma mostly consists of electrons, protons and alpha particles with kinetic energy between 0.5 and 10 keV. The composition of the solar wind plasma also includes a mixture of materials found in the solar plasma: trace amounts of heavy ions and atomic nuclei of elements such as C, N, O, Ne, Mg, Si, S, and Fe. There are also rarer traces of some other nuclei and isotopes such as P, Ti, Cr, and 58Ni, 60Ni, and 62Ni. Superimposed with the solar-wind plasma is the interplanetary magnetic field. The solar wind varies in density, temperature and speed over time and over solar latitude and longitude. Its particles can escape the Sun's gravity because of their high energy resulting from the high temperature of the corona, which in turn is a result of the coronal magnetic field. The boundary separating the corona from the solar wind is called the Alfvén surface.

<span class="mw-page-title-main">Magnetic sail</span> Proposed spacecraft propulsion method

A magnetic sail is a proposed method of spacecraft propulsion where a spacecraft shown as a purple dot in the center of the illustration has a source that generates a magnetic field, which under certain conditions, summarized in the overview section, creates a magnetopause and a bow shock that deflect a plasma wind of charged particles. A low density region forms creating an artificial magnetospheric bubble around the spacecraft. The term magnetospheric object refers to the magnetosphere, magnetopause and the bow shock. Charged particles in the plasma deflected by the bow shock and magnetopause together create an effective sail blocking area that exerts a wind force that acts on the magnetic field, which in turn exerts a magnetic force on the field source that creates a spacecraft force that accelerates the spacecraft in the same direction as the plasma wind.

<span class="mw-page-title-main">Earth's magnetic field</span> Magnetic field that extends from the Earths outer and inner core to where it meets the solar wind

Earth's magnetic field, also known as the geomagnetic field, is the magnetic field that extends from Earth's interior out into space, where it interacts with the solar wind, a stream of charged particles emanating from the Sun. The magnetic field is generated by electric currents due to the motion of convection currents of a mixture of molten iron and nickel in Earth's outer core: these convection currents are caused by heat escaping from the core, a natural process called a geodynamo.

<span class="mw-page-title-main">Geomagnetic storm</span> Disturbance of the Earths magnetosphere

A geomagnetic storm, also known as a magnetic storm, is temporary disturbance of the Earth's magnetosphere caused by a solar wind shock wave.

<span class="mw-page-title-main">Bow shock</span> Boundary between a magnetosphere and an ambient magnetized medium

In astrophysics, a bow shock occurs when the magnetosphere of an astrophysical object interacts with the nearby flowing ambient plasma such as the solar wind. For Earth and other magnetized planets, it is the boundary at which the speed of the stellar wind abruptly drops as a result of its approach to the magnetopause. For stars, this boundary is typically the edge of the astrosphere, where the stellar wind meets the interstellar medium.

<span class="mw-page-title-main">Magnetic reconnection</span> Process in plasma physics

Magnetic reconnection is a physical process occurring in electrically conducting plasmas, in which the magnetic topology is rearranged and magnetic energy is converted to kinetic energy, thermal energy, and particle acceleration. Magnetic reconnection involves plasma flows at a substantial fraction of the Alfvén wave speed, which is the fundamental speed for mechanical information flow in a magnetized plasma.

<span class="mw-page-title-main">Magnetosphere of Saturn</span> Cavity in the solar wind the sixth planet creates

The magnetosphere of Saturn is the cavity created in the flow of the solar wind by the planet's internally generated magnetic field. Discovered in 1979 by the Pioneer 11 spacecraft, Saturn's magnetosphere is the second largest of any planet in the Solar System after Jupiter. The magnetopause, the boundary between Saturn's magnetosphere and the solar wind, is located at a distance of about 20 Saturn radii from the planet's center, while its magnetotail stretches hundreds of Saturn radii behind it.

<span class="mw-page-title-main">Cluster II (spacecraft)</span> European Space Agency mission

Cluster II is a space mission of the European Space Agency, with NASA participation, to study the Earth's magnetosphere over the course of nearly two solar cycles. The mission is composed of four identical spacecraft flying in a tetrahedral formation. As a replacement for the original Cluster spacecraft which were lost in a launch failure in 1996, the four Cluster II spacecraft were successfully launched in pairs in July and August 2000 onboard two Soyuz-Fregat rockets from Baikonur, Kazakhstan. In February 2011, Cluster II celebrated 10 years of successful scientific operations in space. In February 2021, Cluster II celebrated 20 years of successful scientific operations in space. As of March 2023, its mission has been extended until September 2024. The China National Space Administration/ESA Double Star mission operated alongside Cluster II from 2004 to 2007.

<span class="mw-page-title-main">Birkeland current</span> Currents flowing along geomagnetic field lines

A Birkeland current is a set of electrical currents that flow along geomagnetic field lines connecting the Earth's magnetosphere to the Earth's high latitude ionosphere. In the Earth's magnetosphere, the currents are driven by the solar wind and interplanetary magnetic field and by bulk motions of plasma through the magnetosphere. The strength of the Birkeland currents changes with activity in the magnetosphere. Small scale variations in the upward current sheets accelerate magnetospheric electrons which, when they reach the upper atmosphere, create the Auroras Borealis and Australis. In the high latitude ionosphere, the Birkeland currents close through the region of the auroral electrojet, which flows perpendicular to the local magnetic field in the ionosphere. The Birkeland currents occur in two pairs of field-aligned current sheets. One pair extends from noon through the dusk sector to the midnight sector. The other pair extends from noon through the dawn sector to the midnight sector. The sheet on the high latitude side of the auroral zone is referred to as the Region 1 current sheet and the sheet on the low latitude side is referred to as the Region 2 current sheet.

<span class="mw-page-title-main">Flux tube</span> Tube-like region of space with constant magnet flux along its length

A flux tube is a generally tube-like (cylindrical) region of space containing a magnetic field, B, such that the cylindrical sides of the tube are everywhere parallel to the magnetic field lines. It is a graphical visual aid for visualizing a magnetic field. Since no magnetic flux passes through the sides of the tube, the flux through any cross section of the tube is equal, and the flux entering the tube at one end is equal to the flux leaving the tube at the other. Both the cross-sectional area of the tube and the magnetic field strength may vary along the length of the tube, but the magnetic flux inside is always constant.

<span class="mw-page-title-main">Magnetosphere of Jupiter</span> Cavity created in the solar wind

The magnetosphere of Jupiter is the cavity created in the solar wind by Jupiter's magnetic field. Extending up to seven million kilometers in the Sun's direction and almost to the orbit of Saturn in the opposite direction, Jupiter's magnetosphere is the largest and most powerful of any planetary magnetosphere in the Solar System, and by volume the largest known continuous structure in the Solar System after the heliosphere. Wider and flatter than the Earth's magnetosphere, Jupiter's is stronger by an order of magnitude, while its magnetic moment is roughly 18,000 times larger. The existence of Jupiter's magnetic field was first inferred from observations of radio emissions at the end of the 1950s and was directly observed by the Pioneer 10 spacecraft in 1973.

<span class="mw-page-title-main">L-shell</span> Mathematical parameter used to describe planetary magnetic field lines

The L-shell, L-value, or McIlwain L-parameter is a parameter describing a particular set of planetary magnetic field lines. Colloquially, L-value often describes the set of magnetic field lines which cross the Earth's magnetic equator at a number of Earth-radii equal to the L-value. For example, describes the set of the Earth's magnetic field lines which cross the Earth's magnetic equator two earth radii from the center of the Earth. L-shell parameters can also describe the magnetic fields of other planets. In such cases, the parameter is renormalized for that planet's radius and magnetic field model.

<span class="mw-page-title-main">Mercury's magnetic field</span> Mercurys small magnetic field

Mercury's magnetic field is approximately a magnetic dipole apparently global, on planet Mercury. Data from Mariner 10 led to its discovery in 1974; the spacecraft measured the field's strength as 1.1% that of Earth's magnetic field. The origin of the magnetic field can be explained by dynamo theory. The magnetic field is strong enough near the bow shock to slow the solar wind, which induces a magnetosphere.

The impact of the solar wind onto the magnetosphere generates an electric field within the inner magnetosphere - the convection field-. Its general direction is from dawn to dusk. The co-rotating thermal plasma within the inner magnetosphere drifts orthogonal to that field and to the geomagnetic field Bo. The generation process is not yet completely understood. One possibility is viscous interaction between solar wind and the boundary layer of the magnetosphere (magnetopause). Another process may be magnetic reconnection. Finally, a hydromagnetic dynamo process in the polar regions of the inner magnetosphere may be possible. Direct measurements via satellites have given a fairly good picture of the structure of that field. A number of models of that field exists.

In the height region between about 85 and 200 km altitude on Earth, the ionospheric plasma is electrically conducting. Atmospheric tidal winds due to differential solar heating or due to gravitational lunar forcing move the ionospheric plasma against the geomagnetic field lines thus generating electric fields and currents just like a dynamo coil moving against magnetic field lines. That region is therefore called ionospheric dynamo region. The magnetic manifestation of these electric currents on the ground can be observed during magnetospheric quiet conditions. They are called Sq-variations and L-variations (L=lunar) of the geomagnetic field. Additional electric currents are generated by the varying magnetospheric electric convection field. These are the DP1-currents and the polar DP2-currents. Finally, a polar-ring current has been derived from the observations which depends on the polarity of the interplanetary magnetic field. These geomagnetic variations belong to the so-called external part of the geomagnetic field. Their amplitudes reach at most about 1% of the main internal geomagnetic field Bo.

<span class="mw-page-title-main">August 1972 solar storms</span> Solar storms during solar cycle 20

The solar storms of August 1972 were a historically powerful series of solar storms with intense to extreme solar flare, solar particle event, and geomagnetic storm components in early August 1972, during solar cycle 20. The storm caused widespread electric‐ and communication‐grid disturbances through large portions of North America as well as satellite disruptions. On 4 August 1972 the storm caused the accidental detonation of numerous U.S. naval mines near Haiphong, North Vietnam. The coronal mass ejection (CME)'s transit time from the Sun to the Earth is the fastest ever recorded.

David Breed Beard was a space physicist, known for "pioneering work on the shapes and structures of planetary magnetospheres, Jovian radio emissions, and comets."

<span class="mw-page-title-main">Dungey Cycle</span>

The Dungey cycle, officially proposed by James Dungey in 1961, is a phenomenon that explains interactions between a planet's magnetosphere and solar wind. Dungey originally proposed a cyclic behavior of magnetic reconnection between Earth's magnetosphere and flux of solar wind. This reconnection explained previously observed dynamics within Earth's magnetosphere. The rate of reconnection in the beginning of the cycle is dependent on the orientation of the interplanetary magnetic field as well as the resultant plasma conditions at the site of reconnection. On Earth, the reconnection cycle takes around 1 hour, but this differs from planet to planet.

<span class="mw-page-title-main">James Dungey</span> British space scientist

James Wynne "Jim" Dungey (1923–2015) was a British space scientist who was pivotal in establishing the field of space weather and made significant contributions to the fundamental understanding of plasma physics.

References

  1. 1 2 Sydney Chapman; J. Bartels (1940). Geomagnetism, Vol. II. Oxford Univ. Press.
  2. Chapman, Sidney; V. C. A. Ferraro (1931). "A new theory of magnetic storms". Terrestrial Magnetism. 36 (2): 77–97. Bibcode:1931TeMAE..36...77C. doi:10.1029/TE036i002p00077.
  3. Chapman, Sidney; V. C. A. Ferraro (1931). "A new theory of magnetic storms". Terrestrial Magnetism. 36 (3): 171–186. Bibcode:1931TeMAE..36..171C. doi:10.1029/TE036i003p00171.
  4. Chapman, Sidney; V. C. A. Ferraro (1933). "A new theory of magnetic storms, II. The main phase". Terrestrial Magnetism. 38: 79. doi:10.1029/TE038i002p00079.
  5. Chapman, Sidney; V. C. A. Ferraro (1940). "The theory of the first phase of the geomagnetic storm". Terrestrial Magnetism. 45 (3): 245. Bibcode:1940TeMAE..45..245C. doi:10.1029/te045i003p00245.
  6. Dungey, J. W. (January 1961). "Interplanetary Magnetic Field and the Auroral Zones". Phys. Rev. Lett. 6 (2): 47–48. Bibcode:1961PhRvL...6...47D. doi:10.1103/PhysRevLett.6.47 . Retrieved 12 July 2011.
  7. Physics of the Magnetopause, Edited by P. Song, B. U. Ö. Sonnerup, M. F. Thomsen, American Geophys. Union, Washington, D.C., Geophysical Monograph Series, Volume 90, 1995. 447 pages, ISBN   0-87590-047-X
  8. Roelof, E.; Sibeck, D. (1993). "Magnetopause shape as a bivariate function of interplanetary magnetic field Bz and solar wind Dynamic pressure". J. Geophys. Res. 98 (A12): A12. Bibcode:1993JGR....9821421R. doi:10.1029/93JA02362.
  9. Shue, H.; Chao, J.; Fu, H.; Russell, C.; Song, P.; Khurana, K.; Singer, H. (1997). "A new functional form to study the solar wind control of the magnetopause size and shape". J. Geophys. Res. 102 (A5): A5. Bibcode:1997JGR...102.9497S. doi:10.1029/97JA00196.
  10. De Pater, Imke; Lissauer, Jack J. (2001). Planetary sciences. Cambridge: Cambridge University Press. p. 261. ISBN   0-521-48219-4. OCLC   45283049.
  11. M. K. Kivelson; F. Bagenal (2006). P. Weissman; L.-A. McFadden; T. Johnson (eds.). 'Planetary Magnetospheres,' in The Encyclopedia of the Solar System (2nd ed.). Academic Press. p.  477. ISBN   978-0-12-088589-3.
  12. J. Luhmann; M. Tatrallyay; R. Pepin, eds. (1992). Venus and Mars: Atmospheres, Ionospheres and Solar Wind Interactions, Geophysical Monograph Series, Volume 66. Washington, DC: Am. Geophys. Union. p. 448. ISBN   978-0-87590-032-2.