Musical temperament

Last updated
Comparison of notes derived from, or near, twelve perfect fifths (B#). Comparison of twelve fifths.png
Comparison of notes derived from, or near, twelve perfect fifths (B).

In musical tuning, a temperament is a tuning system that slightly compromises the pure intervals of just intonation to meet other requirements. Most modern Western musical instruments are tuned in the equal temperament system. Tempering is the process of altering the size of an interval by making it narrower or wider than pure. "Any plan that describes the adjustments to the sizes of some or all of the twelve fifth intervals in the circle of fifths so that they accommodate pure octaves and produce certain sizes of major thirds is called a temperament." [1] Temperament is especially important for keyboard instruments, which typically allow a player to play only the pitches assigned to the various keys, and lack any way to alter pitch of a note in performance. Historically, the use of just intonation, Pythagorean tuning and meantone temperament meant that such instruments could sound "in tune" in one key, or some keys, but would then have more dissonance in other keys.

Contents

In the words of William Hubbard's Musical Dictionary (1908), an anomalous chord is a "chord containing an interval" that "has been made very sharp or flat in tempering the scale for instruments of fixed pitches". [2]

The development of well temperament allowed fixed-pitch instruments to play reasonably well in all of the keys. The famous Well-Tempered Clavier by Johann Sebastian Bach takes full advantage of this breakthrough, with pieces written in all 24 major and minor keys. However, while unpleasant intervals (such as the wolf interval) were avoided, the sizes of intervals were still not consistent between keys, and so each key still had its own character. This variation led in the 18th century to an increase in the use of equal temperament, in which the frequency ratio between each pair of adjacent notes on the keyboard was made equal. In other words, the ratio between two notes that were one octave apart was kept pure, and the twelve notes in between the octave were equally spaced from one another. [3] This allowed music to be transposed between keys without changing the relationship between notes.

Definition

Temperament, in music, the accommodation or adjustment of the imperfect sounds by transferring a part of their defects to the more perfect ones, in order to remedy, in some degree, the false intervals of those instruments, the sounds of which are fixed; as the organ, harpsichord, piano-forte, etc.
Temperament is what the Italians call participatione, or system temperato, because it is founded on temperature; that is, on the diminution of some intervals and augmentation of others, by which it partakes of the diatonic and chromatic systems. [4]

"Temperament refers to the various tuning systems for the subdivision of the octave," the four principal tuning systems being Pythagorean tuning, just intonation, mean-tone temperament, and equal temperament. [5] In just intonation, every interval between two pitches corresponds to a whole number ratio between their frequencies, allowing intervals varying from the highest consonance to highly dissonant. For instance, 660 Hz / 440 Hz (a ratio of 3:2) constitutes a fifth, and 880 Hz / 440 Hz (2:1) an octave. Such intervals (termed "just") have a stability, or purity to their sound, when played simultaneously (assuming they are played using timbres with harmonic partials) because pure intervals do not waver or beat regularly.[ citation needed ]; [6] the proportions of their frequencies can be expressed as whole numbers. [7] If one of those pitches is adjusted slightly to deviate from the just interval, a trained ear can detect this change by the presence of beats , which are periodical oscillations in the note's intensity. If, for example, two sound signals with frequencies that vary just by 0.5 Hz are played simultaneously, both signals are out of phase by a very small margin, creating the periodical oscillations in the intensity of the final sound (caused by the superposition of both signals) with a repetition period of 2 seconds (following the equation Tr=1/Δf, Tr being the period of repetition and Δf being the difference in frequencies between both signals), because the amplitude of the signals is only in phase, and therefore has a maximum superposition value, once every period of repetition.

Acoustic physics

When a musical instrument with harmonic overtones is played, the ear hears a composite waveform that includes a fundamental frequency (e.g., 440 Hz) and those overtones (880 Hz, 1320 Hz, 1760 Hz, etc.)—a series of just intervals. These just intervals, due to their acoustic nature, are present in many contexts: everything from a blacksmith's hammer to a clock bell will naturally produce these intervals. [8] The waveform of such a tone (as pictured on an oscilloscope) is characterized by a shape that is complex compared to a simple (sine) waveform, but remains periodic. When two tones depart from exact integer ratios, the shape waveform[ clarification needed ] becomes erratic—a phenomenon that may be described as destabilization. As the composite waveform becomes more erratic, the consonance of the interval also changes.[ citation needed ] Furthermore, every interval created by two sustained tones creates a third tone, called a differential (or resultant) tone. This third tone is equal to the lower pitch subtracted from the higher pitch. This third tone then creates intervals with the original two tones, and the difference between these is called a second differential. Differentials are soft and difficult for the untrained ear to detect. [9] Nevertheless, these relationships between differentials play a large role in determining which tunings create consonant sound.

Temperament in music

Tempering an interval involves the deliberate use of such minor adjustments (accepting the related destabilization) to enable musical possibilities that are impractical using just intonation. The most widely known example of this is the use of equal temperament to address problems of older temperaments, allowing for consistent tuning of keyboard and fretted instruments and enabling musical composition in, and modulation among, the various keys.[ citation needed ]

Meantone temperament

Before Meantone temperament became widely used in the Renaissance, the most commonly used tuning system was Pythagorean tuning. Pythagorean tuning was a system of just intonation that tuned every note in a scale from a progression of pure perfect fifths. This was quite suitable for much of the harmonic practice until then (See: Quartal harmony ), but in the Renaissance, musicians wished to make much more use of Tertian harmony. The major third of Pythagorean tuning differed from a just major third by an amount known as syntonic comma, which musicians of the time found annoying. A comma (in musical parlance) is the distance between two tones that are close enough that they share the same name but that are precisely calculated via different proportional spacing, creating a small difference in their exact pitches. [7]

Their solution, laid out by Pietro Aron in the early 16th century, was a series of tunings referred to as meantone temperaments, which temper the interval of a perfect fifth slightly flatter than in just intonation, and then proceed much like Pythagorean tuning, but using tempered fifths instead of the just fifths. With the correct amount of tempering, the syntonic comma is reduced to a unison, bringing the major and minor thirds closer to their ratios in just intonation. While all fifths in this tuning system now beat slightly, this beating effect on the fifths is only one quarter as strong as the beating effect on the thirds of Pythagorean tuning in the case of quarter-comma meantone, since a sequence of four fifths makes up one third, which is why it was considered an acceptable compromise by Renaissance musicians.

Pythagorean tuning also had a second problem, which non-extended meantone temperaments do not solve, which is the problem of modulation (see below ), which is restricted because being limited to 12 pitches per octave results in a broken circle of fifths. A series of 12 just fifths as in Pythagorean tuning does not return to the original pitch, but rather differs by a Pythagorean comma, which makes that tonal area of the system more or less unusable. In meantone temperament, this effect is even more pronounced (the fifth over the break in the circle is known as the Wolf interval, as its intense beating was likened to a "howling"). 53 equal temperament provides an extension of Pythagorean tuning, and 31 equal temperament is used nowadays to extend quarter-comma meantone.

Comparison of perfect fifths, major thirds, and minor thirds in various meantone tunings with just intonation Meantone fifths vs thirds comparison (basic).svg
Comparison of perfect fifths, major thirds, and minor thirds in various meantone tunings with just intonation

Well temperament and equal temperament

Most just intonation tunings have the problem that they cannot modulate to a different key (a very common means of expression throughout the common practice period of music) without discarding many of the tones used in the previous key, thus for every key to which the musician wishes to modulate, the instrument must provide a few more strings, frets, or holes for him or her to use. When building an instrument, this can be very impractical.

Well temperament is the name given to a variety of different systems of temperament that were employed to solve this problem, in which some keys are more in tune than others, but all can be used. This phenomenon gives rise to infinite shades of key-colors, which are lost in the modern standard version: 12-tone equal temperament (12-TET). Unlike meantone temperament, which alters the fifth to "temper out" the syntonic comma, 12-TET tempers out the Pythagorean comma, thus creating a cycle of fifths that repeats itself exactly after 12 steps. This allowed the intervals of tertian harmony, thirds and fifths, to be fairly close to their just counterparts (the fifths almost imperceptibly beating, the thirds a little milder than the syntonic beating of Pythagorean tuning), while permitting the freedom to modulate to any key and by various means (e.g. common-tone and enharmonic modulation, see modulation ). This freedom of modulation also allowed substantial use of more distant harmonic relationships, such as the Neapolitan chord, which became very important to Romantic composers in the 19th century.

Frequently used equal temperament scales

See also

Related Research Articles

<span class="mw-page-title-main">Equal temperament</span> Musical tuning system with constant ratios between notes

An equal temperament is a musical temperament or tuning system that approximates just intervals by dividing an octave into steps such that the ratio of the frequencies of any adjacent pair of notes is the same. This system yields pitch steps perceived as equal in size, due to the logarithmic changes in pitch frequency.

<span class="mw-page-title-main">Just intonation</span> Musical tuning based on pure intervals

In music, just intonation or pure intonation is the tuning of musical intervals as whole number ratios of frequencies. An interval tuned in this way is said to be pure, and is called a just interval. Just intervals consist of tones from a single harmonic series of an implied fundamental. For example, in the diagram, if the notes G3 and C4 are tuned as members of the harmonic series of the lowest C, their frequencies will be 3 and 4 times the fundamental frequency. The interval ratio between C4 and G3 is therefore 4:3, a just fourth.

<span class="mw-page-title-main">Musical tuning</span> Terms for tuning an instrument and a systems of pitches

In music, there are two common meanings for tuning:

<span class="mw-page-title-main">Pythagorean tuning</span> Method of tuning a musical instrument

Pythagorean tuning is a system of musical tuning in which the frequency ratios of all intervals are based on the ratio 3:2. This ratio, also known as the "pure" perfect fifth, is chosen because it is one of the most consonant and easiest to tune by ear and because of importance attributed to the integer 3. As Novalis put it, "The musical proportions seem to me to be particularly correct natural proportions." Alternatively, it can be described as the tuning of the syntonic temperament in which the generator is the ratio 3:2, which is ≈ 702 cents wide.

<span class="mw-page-title-main">Meantone temperament</span> Musical tuning system

Meantone temperaments are musical temperaments, that is a variety of tuning systems, obtained by narrowing the fifths so that their ratio is slightly less than 3:2, in order to push the thirds closer to pure. Meantone temperaments are constructed similarly to Pythagorean tuning, as a stack of equal fifths, but they are temperaments in that the fifths are not pure.

<span class="mw-page-title-main">Syntonic comma</span> Musical interval

In music theory, the syntonic comma, also known as the chromatic diesis, the Didymean comma, the Ptolemaic comma, or the diatonic comma is a small comma type interval between two musical notes, equal to the frequency ratio 81:80 (= 1.0125). Two notes that differ by this interval would sound different from each other even to untrained ears, but would be close enough that they would be more likely interpreted as out-of-tune versions of the same note than as different notes. The comma is also referred to as a Didymean comma because it is the amount by which Didymus corrected the Pythagorean major third to a just major third.

<span class="mw-page-title-main">Wolf interval</span> Dissonant musical interval

In music theory, the wolf fifth is a particularly dissonant musical interval spanning seven semitones. Strictly, the term refers to an interval produced by a specific tuning system, widely used in the sixteenth and seventeenth centuries: the quarter-comma meantone temperament. More broadly, it is also used to refer to similar intervals produced by other tuning systems, including Pythagorean and most meantone temperaments.

<span class="mw-page-title-main">Semitone</span> Musical interval

A semitone, also called a half step or a half tone, is the smallest musical interval commonly used in Western tonal music, and it is considered the most dissonant when sounded harmonically. It is defined as the interval between two adjacent notes in a 12-tone scale, visually seen on a keyboard as the distance between two keys that are adjacent to each other. For example, C is adjacent to C; the interval between them is a semitone.

<span class="mw-page-title-main">Minor third</span> Musical interval

In music theory, a minor third is a musical interval that encompasses three half steps, or semitones. Staff notation represents the minor third as encompassing three staff positions. The minor third is one of two commonly occurring thirds. It is called minor because it is the smaller of the two: the major third spans an additional semitone. For example, the interval from A to C is a minor third, as the note C lies three semitones above A. Coincidentally, there are three staff positions from A to C. Diminished and augmented thirds span the same number of staff positions, but consist of a different number of semitones. The minor third is a skip melodically.

A schismatic temperament is a musical tuning system that results from tempering the schisma of 32805:32768 to a unison. It is also called the schismic temperament, Helmholtz temperament, or quasi-Pythagorean temperament.

<span class="mw-page-title-main">Comma (music)</span> Very small interval arising from discrepancies in tuning

In music theory, a comma is a very small interval, the difference resulting from tuning one note two different ways. Strictly speaking, there are only two kinds of comma, the syntonic comma, "the difference between a just major 3rd and four just perfect 5ths less two octaves", and the Pythagorean comma, "the difference between twelve 5ths and seven octaves". The word comma used without qualification refers to the syntonic comma, which can be defined, for instance, as the difference between an F tuned using the D-based Pythagorean tuning system, and another F tuned using the D-based quarter-comma meantone tuning system. Intervals separated by the ratio 81:80 are considered the same note because the 12-note Western chromatic scale does not distinguish Pythagorean intervals from 5-limit intervals in its notation. Other intervals are considered commas because of the enharmonic equivalences of a tuning system. For example, in 53TET, B and A are both approximated by the same interval although they are a septimal kleisma apart.

Quarter-comma meantone, or 14-comma meantone, was the most common meantone temperament in the sixteenth and seventeenth centuries, and was sometimes used later. In this system the perfect fifth is flattened by one quarter of a syntonic comma (81 : 80), with respect to its just intonation used in Pythagorean tuning ; the result is 3/2 × 14 = 45 ≈ 1.49535, or a fifth of 696.578 cents. This fifth is then iterated to generate the diatonic scale and other notes of the temperament. The purpose is to obtain justly intoned major thirds. It was described by Pietro Aron in his Toscanello de la Musica of 1523, by saying the major thirds should be tuned to be "sonorous and just, as united as possible." Later theorists Gioseffo Zarlino and Francisco de Salinas described the tuning with mathematical exactitude.

12 equal temperament (12-ET) is the musical system that divides the octave into 12 parts, all of which are equally tempered on a logarithmic scale, with a ratio equal to the 12th root of 2. That resulting smallest interval, 112 the width of an octave, is called a semitone or half step.

<span class="mw-page-title-main">53 equal temperament</span> Musical tuning system with 53 pitches equally-spaced on a logarithmic scale

In music, 53 equal temperament, called 53 TET, 53 EDO, or 53 ET, is the tempered scale derived by dividing the octave into 53 equal steps. Each step represents a frequency ratio of 2153, or 22.6415 cents, an interval sometimes called the Holdrian comma.

<span class="mw-page-title-main">31 equal temperament</span> In music, a microtonal tuning system

In music, 31 equal temperament, 31-ET, which can also be abbreviated 31-TET or 31-EDO, also known as tricesimoprimal, is the tempered scale derived by dividing the octave into 31 equal-sized steps. Each step represents a frequency ratio of 312, or 38.71 cents.

<span class="mw-page-title-main">Pythagorean interval</span> Musical interval

In musical tuning theory, a Pythagorean interval is a musical interval with a frequency ratio equal to a power of two divided by a power of three, or vice versa. For instance, the perfect fifth with ratio 3/2 (equivalent to 31/ 21) and the perfect fourth with ratio 4/3 (equivalent to 22/ 31) are Pythagorean intervals.

<span class="mw-page-title-main">Music and mathematics</span> Relationships between music and mathematics

Music theory analyzes the pitch, timing, and structure of music. It uses mathematics to study elements of music such as tempo, chord progression, form, and meter. The attempt to structure and communicate new ways of composing and hearing music has led to musical applications of set theory, abstract algebra and number theory.

<span class="mw-page-title-main">Regular diatonic tuning</span>

A regular diatonic tuning is any musical scale consisting of "tones" (T) and "semitones" (S) arranged in any rotation of the sequence TTSTTTS which adds up to the octave with all the T's being the same size and all the S's the being the same size, with the 'S's being smaller than the 'T's. In such a tuning, then the notes are connected together in a chain of seven fifths, all the same size which makes it a Linear temperament with the tempered fifth as a generator.

<span class="mw-page-title-main">Five-limit tuning</span>

Five-limit tuning, 5-limit tuning, or 5-prime-limit tuning (not to be confused with 5-odd-limit tuning), is any system for tuning a musical instrument that obtains the frequency of each note by multiplying the frequency of a given reference note (the base note) by products of integer powers of 2, 3, or 5 (prime numbers limited to 5 or lower), such as 2−3·31·51 = 15/8.

References

  1. Donahue, Thomas (2005). A Guide to Musical Temperament, p.19. Scarecrow. ISBN   9780810854383.
  2. Hubbard, William Lines (1908). The American History and Encyclopedia of Music: Musical Dictionary , p.103-4. Irving Squire: London. [ISBN unspecified]. Also at the HathiTrust Digital Library
  3. Pykett, Colin (2019). "Handel's Temperament". Organists' Review. 106 (3): 24–31 via EBSCO.
  4. John Mason Good, Olinthus Gregory, Newton Bosworth (1813). Pantologia: New Cyclopedia , [unpaginated]. Kearsley. [ISBN unspecified].
  5. Cooper, Paul (1975). Perspectives in Music Theory, p.16. Dodd, Mead & Co. ISBN   0-396-06752-2.
  6. Pykett, Colin (2019). "Handel's Temperament". Organists' Review. 106 (3): 24–31 via EBSCO.
  7. 1 2 Isacoff, Stuart (2001). Temperament: The idea that solved music's greatest riddle. New York: Random House. pp. 64–65. ISBN   0375403558.
  8. Whittingham, A. (1867). "Analogy of the Laws of Musical Temperament to the Natural Dissonance of Creation". The Musical Standard. VI (144): 277–279 via EBSCO.
  9. Norden, N. Lindsay (1949). "A new study of six- and six-four chords [Based on just intonation rather than equal temperament, and the ratios of the intervals. Analytic musical examples]". Musicology. 2 (4): 347–365 via EBSCO.

Further reading

Articles

Books