Myelitis

Last updated
Myelitis
Specialty Neurology   OOjs UI icon edit-ltr-progressive.svg

Myelitis is inflammation of the spinal cord which can disrupt the normal responses from the brain to the rest of the body, and from the rest of the body to the brain. Inflammation in the spinal cord can cause the myelin and axon to be damaged resulting in symptoms such as paralysis and sensory loss. Myelitis is classified to several categories depending on the area or the cause of the lesion; however, any inflammatory attack on the spinal cord is often referred to as transverse myelitis.

Contents

Types of myelitis

Myelitis damages the myelin sheath that wraps the axon. Nerve.nida.jpg
Myelitis damages the myelin sheath that wraps the axon.
MRI image of transverse myelitis patient's spinal cord Transverse myelitis MRI.jpg
MRI image of transverse myelitis patient's spinal cord

Myelitis lesions usually occur in a narrow region but can be spread and affect many areas.

Osteomyelitis of the vertebral bone surrounding the spinal cord (that is, vertebral osteomyelitis) is a separate condition, although some infections (for example, Staphylococcus aureus infection) can occasionally cause both at once. The similarity of the words reflects that the combining form myel(o)- has multiple (homonymous) senses referring to bone marrow or the spinal cord.

Symptoms

Depending on the cause of the disease, such clinical conditions manifest different speed in progression of symptoms in a matter of hours to days. Most myelitis manifests fast progression in muscle weakness or paralysis starting with the legs and then arms with varying degrees of severity. Sometimes the dysfunction of arms or legs cause instability of posture and difficulty in walking or any movement. Also symptoms generally include paresthesia which is a sensation of tickling, tingling, burning, pricking, or numbness of a person's skin with no apparent long-term physical effect. Adult patients often report pain in the back, extremities, or abdomen. [2] Patients also present increased urinary urgency, bowel or bladder dysfunctions such as bladder incontinence, difficulty or inability to void, and incomplete evacuation of bowel or constipation. Others also report fever, respiratory problems and intractable vomiting. [3]

Diseases associated with myelitis

Conditions associated with myelitis include:

Cause

Myelitis occurs due to various reasons such as infections. Direct infection by viruses, bacteria, mold, or parasites such as human immunodeficiency virus (HIV), human T-lymphotropic virus types I and II (HTLV-I/II), syphilis, lyme disease, and tuberculosis can cause myelitis but it can also be caused due to non-infectious or inflammatory pathway. Myelitis often follows after the infections or after vaccination. These phenomena can be explained by a theory of autoimmune attack which states that the autoimmune bodies attack its spinal cord in response to immune reaction.

Mechanism of myelitis

The theory of autoimmune attack claims that a person with neuroimmunologic disorders have genetic predisposition to auto-immune disorder, and the environmental factors would trigger the disease. The specific genetics in myelitis is not completely understood. It is believed that the immune system response could be to viral, bacterial, fungal, or parasitic infection; however, it is not known why the immune system attacks itself. Especially, for the immune system to cause inflammatory response anywhere in the central nervous system, the cells from the immune system must pass through the blood brain barrier. In the case of myelitis, not only is the immune system dysfunctional, but the dysfunction also crosses this protective blood brain barrier to affect the spinal cord. [8]

Infectious myelitis [9]

The location of motor neurons in the anterior horn cells of the spinal column will be affected by the polioviruses causing poliomyelitis. Polio spinal diagram-en.svg
The location of motor neurons in the anterior horn cells of the spinal column will be affected by the polioviruses causing poliomyelitis.

Most viral myelitis is acute, but the retroviruses (such as HIV and HTLV) can cause chronic myelitis. Poliomyelitis, or gray matter myelitis, is usually caused by infection of anterior horn of the spinal cord by the enteroviruses (polioviruses, enteroviruses (EV) 70 and 71, echoviruses, coxsackieviruses A and B) and the flaviviruses (West Nile, Japanese encephalitis, tick-borne encephalitis). On the other hand, transverse myelitis or leukomyelitis, or white matter myelitis, are often caused by the herpesviruses and influenza virus. It can be due to direct viral invasion or via immune mediated mechanisms.

Bacterial myelitis includes Mycoplasma pneumoniae , which is a common agent for respiratory tract. Studies have shown respiratory tract infections within 4–39 days prior to the onset of transverse myelitis. Or, tuberculosis, syphilis, and brucellosis are also known to cause myelitis in immune-compromised individuals. Myelitis is a rare manifestation of bacterial infection.

Fungi have been reported to cause spinal cord disease either by forming abscesses inside the bone or by granuloma. In general, there are two groups of fungi that may infect the CNS and cause myelitis - primary and secondary pathogens. Primary pathogens include the following: Cryptococcus neoformans , Coccidioides immitis , Blastomyces dermatitides , and Hystoplasma capsulatum . Secondary pathogens are opportunistic agents that primarily infect immunocompromised hosts such as Candida species, Aspergillus species, and zygomycetes.

Parasitic species infect human hosts through larvae that penetrate the skin. Then they enter the lymphatic and circulatory system, and migrate to liver and lung. Some reach the spinal cord. Parasitic infections have been reported with Schistosoma species, Toxocara canis , Echinococcus species, Taenia solium , Trichinella spiralis , and Plasmodium species.

Autoimmune myelitis

In 2016, it was identified in Mayo clinic an autoimmune form of myelitis due to the presence of anti-GFAP autoantibodies. Immunoglobulins directed against the α-isoform of glial fibrillary acidic protein (GFAP-IgG) predicted a special meningoencephalomyelitis termed autoimmune GFAP Astrocytopathy [10] that later was found also to be able to appear as a myelitis. [10]

Diagnosis

Myelitis has an extensive differential diagnosis. The type of onset (acute versus subacute/chronic) along with associated symptoms such as the presence of pain, constitutional symptoms that encompass fever, malaise, weight loss or a cutaneous rash may help identify the cause of myelitis. In order to establish a diagnosis of myelitis, one has to localize the spinal cord level, and exclude cerebral and neuromuscular diseases. Also a detailed medical history, a careful neurologic examination, and imaging studies using magnetic resonance imaging (MRI) are needed. In respect to the cause of the process, further work-up would help identify the cause and guide treatment. Full spine MRI is warranted, especially with acute onset myelitis, to evaluate for structural lesions that may require surgical intervention, or disseminated disease. [11] Adding gadolinium further increases diagnostic sensitivity. A brain MRI may be needed to identify the extent of central nervous system (CNS) involvement. Lumbar puncture is important for the diagnosis of acute myelitis when a tumoral process, inflammatory or infectious cause are suspected, or the MRI is normal or non-specific. Complementary blood tests are also of value in establishing a firm diagnosis. Rarely, a biopsy of a mass lesion may become necessary when the cause is uncertain. However, in 15–30% of people with subacute or chronic myelitis, a clear cause is never uncovered. [9]

Treatment

Since each case is different, the following are possible treatments that patients might receive in the management of myelitis.

High-dose intravenous methyl-prednisolone for 3–5 days is considered as a standard of care for patients suspected to have acute myelitis, unless there are compelling reasons otherwise. The decision to offer continued steroids or add a new treatment is often based on the clinical course and MRI appearance at the end of five days of steroids. [12]

Patients with moderate to aggressive forms of disease who do not show much improvement after being treated with intravenous and oral steroids will be treated with PLEX. Retrospective studies of patients with TM treated with IV steroids followed by PLEX showed a positive outcome. It also has been shown to be effective with other autoimmune or inflammatory central nervous system disorders. Particular benefit has been shown with patients who are in the acute or subacute stage of the myelitis showing active inflammation on MRI. However, because of the risks implied by the lumbar puncture procedure, this intervention is determined by the treating physician on a case-by-case basis. [12]

Myelitis with no definite cause seldom recurs, but for others, myelitis may be a manifestation of other diseases that are mentioned above. In these cases, ongoing treatment with medications that modulate or suppress the immune system may be necessary. Sometimes there is no specific treatment. Either way, aggressive rehabilitation and long-term symptom management are an integral part of the healthcare plan.

Prospective research direction

Central nervous system nerve regeneration would be able to repair or regenerate the damage caused to the spinal cord. It would restore functions lost due to the disease. [14]

Currently, there exists a hydrogel based scaffold which acts as a channel to deliver nerve growth-enhancing substrates while providing structural support. These factors would promote nerve repairs to the target area. Hydrogels' macroporous properties would enable attachment of cells and enhance ion and nutrient exchange. In addition, hydrogels' biodegradability or bioresolvability would prevent the need for surgical removal of the hydrogel after drug delivery. It means that it would be dissolved naturally by the body's enzymatic reaction.

  • Neurotropic factor therapy and gene therapy
  • Neurotropic growth factors regulate growth, survival, and plasticity of the axon. They benefit nerve regeneration after injury to the nervous system. They are a potent initiator of sensory axon growth and are up-regulated at the lesion site. The continuous delivery of neurotropic growth factor (NGF) would increase the nerve regeneration in the spinal cord. However, the excessive dosing of NGF often leads to undesired plasticity and sprouting of uninjured sensory nerves. Gene therapy would be able to increase the NGF efficacy by the controlled and sustained delivery in a site-specific manner.

The possibility for nerve regeneration after injury to the spinal cord was considered to be limited because of the absence of major neurogenesis. However, Joseph Altman showed that cell division does occur in the brain which allowed potential for stem cell therapy for nerve regeneration. [15] [16] The stem cell-based therapies are used in order to replace cells lost and injured due to inflammation, to modulate the immune system, and to enhance regeneration and remyelination of axons. [17] Neural stem cells (NSC) have the potential to integrate with the spinal cord because in the recent past investigations have demonstrated their potential for differentiation into multiple cell types that are crucial to the spinal cord. Studies show that NSCs that were transplanted into a demyelinating spinal cord lesion were found to regenerate oligodendrocytes and Schwann cells, and completely remyelinated axons. [18]

See also

Related Research Articles

<span class="mw-page-title-main">Foix–Alajouanine syndrome</span> Medical condition

Foix–Alajouanine syndrome, also called subacute ascending necrotizing myelitis, is a disease caused by an arteriovenous malformation of the spinal cord. In particular, most cases involve dural arteriovenous malformations that present in the lower thoracic or lumbar spinal cord. The condition is named after Charles Foix and Théophile Alajouanine who first described the condition in 1926.

<span class="mw-page-title-main">Myelin</span> Fatty substance that surrounds nerve cell axons to insulate them and increase transmission speed

Myelin is a lipid-rich material that surrounds nerve cell axons to insulate them and increase the rate at which electrical impulses pass along the axon. The myelinated axon can be likened to an electrical wire with insulating material (myelin) around it. However, unlike the plastic covering on an electrical wire, myelin does not form a single long sheath over the entire length of the axon. Rather, myelin ensheaths the axon segmentally: in general, each axon is encased in multiple long sheaths with short gaps between, called nodes of Ranvier. At the nodes of Ranvier, which are approximately one thousandth of a mm in length, the axon's membrane is bare of myelin.

<span class="mw-page-title-main">Progressive multifocal leukoencephalopathy</span> Viral disease affecting human brains

Progressive multifocal leukoencephalopathy (PML) is a rare and often fatal viral disease characterized by progressive damage (-pathy) or inflammation of the white matter (leuko-) of the brain (-encephalo-) at multiple locations (multifocal). It is caused by the JC virus, which is normally present and kept under control by the immune system. The JC virus is harmless except in cases of weakened immune systems. In general, PML has a mortality rate of 30–50% in the first few months, and those who survive can be left with varying degrees of neurological disabilities.

<span class="mw-page-title-main">Transverse myelitis</span> Medical condition of the spinal cord

Transverse myelitis (TM) is a rare neurological condition wherein the spinal cord is inflamed. The adjective transverse implies that the spinal inflammation (myelitis) extends horizontally throughout the cross section of the spinal cord; the terms partial transverse myelitis and partial myelitis are sometimes used to specify inflammation that affects only part of the width of the spinal cord. TM is characterized by weakness and numbness of the limbs, deficits in sensation and motor skills, dysfunctional urethral and anal sphincter activities, and dysfunction of the autonomic nervous system that can lead to episodes of high blood pressure. Signs and symptoms vary according to the affected level of the spinal cord. The underlying cause of TM is unknown. The spinal cord inflammation seen in TM has been associated with various infections, immune system disorders, or damage to nerve fibers, by loss of myelin. As opposed to leukomyelitis which affects only the white matter, it affects the entire cross-section of the spinal cord. Decreased electrical conductivity in the nervous system can result.

<span class="mw-page-title-main">Multiple sclerosis</span> Disease that damages the myelin sheaths around nerves

Multiplesclerosis (MS) is an autoimmune disease in which the insulating covers of nerve cells in the brain and spinal cord are damaged. This damage disrupts the ability of parts of the nervous system to transmit signals, resulting in a range of signs and symptoms, including physical, mental, and sometimes psychiatric problems. Specific symptoms can include double vision, vision loss, eye pain, muscle weakness, and loss of sensation or coordination. MS takes several forms, with new symptoms either occurring in isolated attacks or building up over time. In the relapsing forms of MS, between attacks, symptoms may disappear completely, although some permanent neurological problems often remain, especially as the disease advances. In the progressive forms of MS, bodily function slowly deteriorates and disability worsens once symptoms manifest and will steadily continue to do so if the disease is left untreated.

<span class="mw-page-title-main">Demyelinating disease</span> Any neurological disease in which the myelin sheath of neurons is damaged

A demyelinating disease refers to any disease affecting the nervous system where the myelin sheath surrounding neurons is damaged. This damage disrupts the transmission of signals through the affected nerves, resulting in a decrease in their conduction ability. Consequently, this reduction in conduction can lead to deficiencies in sensation, movement, cognition, or other functions depending on the nerves affected.

<span class="mw-page-title-main">Astrogliosis</span> Increase in astrocytes in response to brain injury

Astrogliosis is an abnormal increase in the number of astrocytes due to the destruction of nearby neurons from central nervous system (CNS) trauma, infection, ischemia, stroke, autoimmune responses or neurodegenerative disease. In healthy neural tissue, astrocytes play critical roles in energy provision, regulation of blood flow, homeostasis of extracellular fluid, homeostasis of ions and transmitters, regulation of synapse function and synaptic remodeling. Astrogliosis changes the molecular expression and morphology of astrocytes, in response to infection for example, in severe cases causing glial scar formation that may inhibit axon regeneration.

Neuromyelitis optica spectrum disorders (NMOSD), including neuromyelitis optica (NMO), are autoimmune diseases characterized by acute inflammation of the optic nerve and the spinal cord (myelitis). Episodes of ON and myelitis can be simultaneous or successive. A relapsing disease course is common, especially in untreated patients. In more than 80% of cases, NMO is caused by immunoglobulin G autoantibodies to aquaporin 4 (anti-AQP4), the most abundant water channel protein in the central nervous system. A subset of anti-AQP4-negative cases is associated with antibodies against myelin oligodendrocyte glycoprotein (anti-MOG). Rarely, NMO may occur in the context of other autoimmune diseases or infectious diseases. In some cases, the etiology remains unknown.

<span class="mw-page-title-main">Aseptic meningitis</span> Medical condition

Aseptic meningitis is the inflammation of the meninges, a membrane covering the brain and spinal cord, in patients whose cerebral spinal fluid test result is negative with routine bacterial cultures. Aseptic meningitis is caused by viruses, mycobacteria, spirochetes, fungi, medications, and cancer malignancies. The testing for both meningitis and aseptic meningitis is mostly the same. A cerebrospinal fluid sample is taken by lumbar puncture and is tested for leukocyte levels to determine if there is an infection and goes on to further testing to see what the actual cause is. The symptoms are the same for both meningitis and aseptic meningitis but the severity of the symptoms and the treatment can depend on the certain cause.

Experimental autoimmune encephalomyelitis, sometimes experimental allergic encephalomyelitis (EAE), is an animal model of brain inflammation. It is an inflammatory demyelinating disease of the central nervous system (CNS). It is mostly used with rodents and is widely studied as an animal model of the human CNS demyelinating diseases, including multiple sclerosis (MS) and acute disseminated encephalomyelitis (ADEM). EAE is also the prototype for T-cell-mediated autoimmune disease in general.

<span class="mw-page-title-main">Chronic inflammatory demyelinating polyneuropathy</span> Medical condition

Chronic inflammatory demyelinating polyneuropathy (CIDP) is an acquired autoimmune disease of the peripheral nervous system characterized by progressive weakness and impaired sensory function in the legs and arms. The disorder is sometimes called chronic relapsing polyneuropathy (CRP) or chronic inflammatory demyelinating polyradiculoneuropathy. CIDP is closely related to Guillain–Barré syndrome and it is considered the chronic counterpart of that acute disease. Its symptoms are also similar to progressive inflammatory neuropathy. It is one of several types of neuropathy.

<span class="mw-page-title-main">Lesional demyelinations of the central nervous system</span>

Multiple sclerosis and other demyelinating diseases of the central nervous system (CNS) produce lesions and glial scars or scleroses. They present different shapes and histological findings according to the underlying condition that produces them.

Vascular myelopathy refers to an abnormality of the spinal cord in regard to its blood supply. The blood supply is complicated and supplied by two major vessel groups: the posterior spinal arteries and the anterior spinal arteries—of which the Artery of Adamkiewicz is the largest. Both the posterior and anterior spinal arteries run the entire length of the spinal cord and receive anastomotic (conjoined) vessels in many places. The anterior spinal artery has a less efficient supply of blood and is therefore more susceptible to vascular disease. Whilst atherosclerosis of spinal arteries is rare, necrosis in the anterior artery can be caused by disease in vessels originating from the segmental arteries such as atheroma or aortic dissection.

<span class="mw-page-title-main">Mollaret's meningitis</span> Medical condition

Mollaret's meningitis is a recurrent or chronic inflammation of the protective membranes covering the brain and spinal cord, known collectively as the meninges. Since Mollaret's meningitis is a recurrent, benign (non-cancerous), aseptic meningitis, it is also referred to as benign recurrent lymphocytic meningitis. It was named for Pierre Mollaret, the French neurologist who first described it in 1944.

<span class="mw-page-title-main">Tumefactive multiple sclerosis</span> Medical condition

Tumefactive multiple sclerosis is a condition in which the central nervous system of a person has multiple demyelinating lesions with atypical characteristics for those of standard multiple sclerosis (MS). It is called tumefactive as the lesions are "tumor-like" and they mimic tumors clinically, radiologically and sometimes pathologically.

<span class="mw-page-title-main">CNS demyelinating autoimmune diseases</span> Medical condition

CNS demyelinating autoimmune diseases are autoimmune diseases which primarily affect the central nervous system.

Neurovirology is an interdisciplinary field which represents a melding of clinical neuroscience, virology, immunology, and molecular biology. The main focus of the field is to study viruses capable of infecting the nervous system. In addition to this, the field studies the use of viruses to trace neuroanatomical pathways, for gene therapy, and to eliminate detrimental populations of neural cells.

<span class="mw-page-title-main">Acute flaccid myelitis</span> Condition of the spinal cord with symptoms of rapid onset of arm or leg weakness

Acute flaccid myelitis (AFM) is a serious condition of the spinal cord. Symptoms include rapid onset of arm or leg weakness and decreased reflexes. Difficulty moving the eyes, speaking, or swallowing may also occur. Occasionally, numbness or pain may be present. Complications can include trouble breathing.

<span class="mw-page-title-main">Pathology of multiple sclerosis</span> Pathologic overview

Multiple sclerosis (MS) can be pathologically defined as the presence of distributed glial scars (scleroses) in the central nervous system that must show dissemination in time (DIT) and in space (DIS) to be considered MS lesions.

MOG antibody disease (MOGAD) or MOG antibody-associated encephalomyelitis (MOG-EM) is an inflammatory demyelinating disease of the central nervous system. Serum anti-myelin oligodendrocyte glycoprotein antibodies are present in up to half of patients with an acquired demyelinating syndrome and have been described in association with a range of phenotypic presentations, including acute disseminated encephalomyelitis, optic neuritis, transverse myelitis, and neuromyelitis optica.

References

  1. Kelly H (April 2006). "Evidence for a causal association between oral polio vaccine and transverse myelitis: A case history and review of the Literature". J Paediatr Child Health. 42 (4): 155–9. doi:10.1111/j.1440-1754.2006.00840.x. PMID   16630313. S2CID   25968577.
  2. Thomas M, Thomas J (February 1997). "Acute transverse myelitis". J la State Med Soc. 149 (2): 75–7. PMID   9055531.
  3. Wasay M, Arif H, Khealani B, Ahsan H (July 2006). "Neuroimaging of tuberculous myelitis: analysis of ten cases and review of literature". J Neuroimaging. 16 (3): 197–205. doi:10.1111/j.1552-6569.2006.00032.x. PMID   16808820. S2CID   23371278.
  4. Baum J, Solomon M, Alba A (1981). "Sarcoidosis as a cause of transverse myelitis: case report". Paraplegia. 19 (3): 167–9. doi: 10.1038/sc.1981.34 . PMID   7254896.
  5. Stenius B, Wide L, Seymour WM, Holford-Strevens V, Pepys J (March 1971). "Clinical significance of specific IgE to common allergens. I. Relationship of specific IgE against Dermatophagoides spp. and grass pollen to skin and nasal tests and history". Clinical & Experimental Allergy. 1 (1): 37–55. doi:10.1111/j.1365-2222.1971.tb02446.x. PMID   4115166. S2CID   41001330.
  6. Yoon JH, Joo IS, Li WY, Sohn SY (October 2009). "Clinical and laboratory characteristics of atopic myelitis: Korean experience". J. Neurol. Sci. 285 (1–2): 154–8. doi:10.1016/j.jns.2009.06.033. PMID   19628231. S2CID   26571843.
  7. Wendebourg, M.J., Nagy, S., Derfuss, T. et al. Magnetic resonance imaging in immune-mediated myelopathies, J Neurol (2019). https://doi.org/10.1007/s00415-019-09206-2
  8. "Transverse Myelitis Association - Advocating for individuals with rare neuro-immune disorders". The Transverse Myelitis Association. Retrieved 21 March 2018.
  9. 1 2 Mihai C, Jubelt B (December 2012). "Infectious myelitis". Curr Neurol Neurosci Rep. 12 (6): 633–41. doi:10.1007/s11910-012-0306-3. PMID   22927022. S2CID   7920572.
  10. 1 2 Sechi E, Morris PP, McKeon A, Pittock SJ, Hinson SR, Weinshenker BG, Aksamit AJ, Krecke KN, Kaufmann TJ, Jolliffe EA, Zalewski NL, Zekeridou A, Wingerchuk DM, Jitprapaikulsan J, Flanagan EP (July 2018). "Glial fibrillary acidic protein IgG related myelitis: characterisation and comparison with aquaporin-4-IgG myelitis". J. Neurol. Neurosurg. Psychiatry. 90 (4): 488–490. doi:10.1136/jnnp-2018-318004. PMID   30032117. S2CID   51707471.
  11. Kitley JL, Leite MI, George JS, Palace JA (March 2012). "The differential diagnosis of longitudinally extensive transverse myelitis". Mult. Scler. 18 (3): 271–85. doi:10.1177/1352458511406165. PMID   21669935. S2CID   23436434.
  12. 1 2 "Transverse Myelitis (TM) Treatment – Johns Hopkins Transverse Myelitis Center". hopkinsmedicine.org. Retrieved 21 March 2018.
  13. Scott TF, Frohman EM, De Seze J, Gronseth GS, Weinshenker BG (December 2011). "Evidence-based guideline: clinical evaluation and treatment of transverse myelitis: report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology". Neurology. 77 (24): 2128–34. doi: 10.1212/WNL.0b013e31823dc535 . PMID   22156988.
  14. Karumbaiah, L., Bellamkonda, R.. Neural Tissue Engineering.
  15. Altman J, Das GD (June 1965). "Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats". J. Comp. Neurol. 124 (3): 319–35. doi:10.1002/cne.901240303. PMID   5861717. S2CID   14121873.
  16. Reynolds BA, Weiss S (March 1992). "Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system". Science. 255 (5052): 1707–10. Bibcode:1992Sci...255.1707R. doi:10.1126/science.1553558. PMID   1553558. S2CID   17905159.
  17. Rowland JW, Hawryluk GW, Kwon B, Fehlings MG (2008). "Current status of acute spinal cord injury pathophysiology and emerging therapies: promise on the horizon". Neurosurg Focus. 25 (5): E2. doi: 10.3171/FOC.2008.25.11.E2 . PMID   18980476.
  18. Keirstead HS, Ben-Hur T, Rogister B, O'Leary MT, Dubois-Dalcq M, Blakemore WF (September 1999). "Polysialylated neural cell adhesion molecule-positive CNS precursors generate both oligodendrocytes and Schwann cells to remyelinate the CNS after transplantation". J. Neurosci. 19 (17): 7529–36. doi:10.1523/jneurosci.19-17-07529.1999. PMC   6782511 . PMID   10460259.