Nuclear electric rocket

Last updated

A nuclear electric rocket (more properly nuclear electric propulsion) is a type of spacecraft propulsion system where thermal energy from a nuclear reactor is converted to electrical energy, which is used to drive an ion thruster or other electrical spacecraft propulsion technology. [1] [2] [3] [4] [5] [6] [7] [8] The nuclear electric rocket terminology is slightly inconsistent, as technically the "rocket" part of the propulsion system is non-nuclear and could also be driven by solar panels. This is in contrast with a nuclear thermal rocket, which directly uses reactor heat to add energy to a working fluid, which is then expelled out of a rocket nozzle.

Contents

Conceptual overview

The key elements to NEP are:

  1. A compact reactor core
  2. An electric generator
  3. A compact waste heat rejection system such as heat pipes
  4. An electric power conditioning and distribution system
  5. Electrically powered spacecraft propulsion

History

United States

A 1963 paper by Myron Levoy proposed a hybrid nuclear-electric engine design, which would have been able to work both in open-cycle mode as a nuclear thermal engine during mission phases requiring high thrust, as well as in closed-cycle mode as a nuclear-electric engine with low thrust, but high efficiency during remaining mission phases. The proposed application of this engine design was for a fast human-crewed round-trip mission to Mars. [9]

In 2001, the Safe affordable fission engine was under development, with a tested 30 kW nuclear heat source intended to lead to the development of a 400 kW thermal reactor with Brayton cycle gas turbines to produce electric power. Waste heat rejection was intended to be accomplished using low-mass heat pipe technology. Safety was intended to be assured by a rugged design.[ citation needed ]

Project Prometheus was an early 2000s NASA study on nuclear electric spacecraft.[ citation needed ]

Kilopower is the latest NASA reactor development program, but is intended for surface use only.[ citation needed ]

Russia

The TEM project started in 2009 with the goal of powering a Mars engine.

March 2016 - First batch of nuclear fuel received[ citation needed ]

Concepts

Pebble bed reactor combined with gas turbine

A pebble bed reactor using high mass-flow gaseous nitrogen coolant near normal atmospheric pressures is a possible heat source. Power generation could be accomplished with gas turbine technology, which is well developed. Nuclear fuel would be highly enriched uranium encapsulated in low-boron graphite balls probably 5–10 cm in diameter. The graphite would also moderate the neutrons of the nuclear reaction.

This style of reactor can be designed to be inherently safe. As it heats, the graphite expands, separating the fuel and reducing the reactor's criticality. This property can simplify the operating controls to a single valve throttling the turbine. When closed, the reactor heats, but produces less power. When open, the reactor cools, but becomes more critical and produces more power.

The graphite encapsulation simplifies refueling and waste handling. Graphite is mechanically strong, and resists high temperatures. This reduces the risk of an unplanned release of radioactive elements, including fission products. Since this style of reactor produces high power without heavy castings to contain high pressures, it is well suited to power spacecraft. [10]

Novel electric propulsion concepts

A variety of electric propulsion technologies have been proposed for use with high power nuclear electrical generation systems, including VASIMR, DS4G, and pulsed inductive thruster (PIT). PIT and VASIMR are unique in their ability to trade between power usage, specific impulse (a measure of efficiency, see specific impulse) and thrust in-flight. PIT has the additional advantage of not needing conditioned power.[ citation needed ]

Electrical generation

A number of heat-to-electricity schemes have been proposed. In the near term, Rankine cycle, Brayton cycle, and Stirling cycle generators go through an intermediate mechanical phase, with attendant energy losses. More exotic technologies have also been proposed: thermoelectric (including graphene-based thermal power conversion [11] [12] [13] ), pyroelectric, thermophotovoltaic, thermionic and magnetohydrodynamic type thermoelectric materials.

Other types of nuclear power concepts in space

Radioisotope thermoelectric generators, radioisotope heater units, radioisotope piezoelectric generators, and the radioisotope rocket all use the heat from a static radioactive source (usually Plutonium-238) for a low level of electric or direct propulsion power. Other concepts include the nuclear thermal rocket, the fission fragment rocket, nuclear pulse propulsion, and the possibility of a fusion rocket, assuming that nuclear fusion technology is developed at some point in the near future.[ citation needed ]

See also

Related Research Articles

<span class="mw-page-title-main">Ion thruster</span> Spacecraft engine that generates thrust by generating a jet of ions

An ion thruster, ion drive, or ion engine is a form of electric propulsion used for spacecraft propulsion. An ion thruster creates a cloud of positive ions from a neutral gas by ionizing it to extract some electrons from its atoms. The ions are then accelerated using electricity to create thrust. Ion thrusters are categorized as either electrostatic or electromagnetic.

<span class="mw-page-title-main">Magnetoplasmadynamic thruster</span> Form of electrically powered spacecraft propulsion

A magnetoplasmadynamic (MPD) thruster (MPDT) is a form of electrically powered spacecraft propulsion which uses the Lorentz force to generate thrust. It is sometimes referred to as Lorentz Force Accelerator (LFA) or MPD arcjet.

<span class="mw-page-title-main">Nuclear thermal rocket</span> Rocket engine that uses a nuclear reactor to generate thrust

A nuclear thermal rocket (NTR) is a type of thermal rocket where the heat from a nuclear reaction replaces the chemical energy of the propellants in a chemical rocket. In an NTR, a working fluid, usually liquid hydrogen, is heated to a high temperature in a nuclear reactor and then expands through a rocket nozzle to create thrust. The external nuclear heat source theoretically allows a higher effective exhaust velocity and is expected to double or triple payload capacity compared to chemical propellants that store energy internally.

In a traditional nuclear photonic rocket, an onboard nuclear reactor would generate such high temperatures that the blackbody radiation from the reactor would provide significant thrust. The disadvantage is that it takes much power to generate a small amount of thrust this way, so acceleration is very low. The photon radiators would most likely be constructed using graphite or tungsten. Photonic rockets are technologically feasible, but rather impractical with current technology based on an onboard nuclear power source.

<span class="mw-page-title-main">Variable Specific Impulse Magnetoplasma Rocket</span> Electrothermal thruster in development

The Variable Specific Impulse Magnetoplasma Rocket (VASIMR) is an electrothermal thruster under development for possible use in spacecraft propulsion. It uses radio waves to ionize and heat an inert propellant, forming a plasma, then a magnetic field to confine and accelerate the expanding plasma, generating thrust. It is a plasma propulsion engine, one of several types of spacecraft electric propulsion systems.

<span class="mw-page-title-main">Radioisotope thermoelectric generator</span> Electrical generator that uses heat from radioactive decay

A radioisotope thermoelectric generator, sometimes referred to as a radioisotope power system (RPS), is a type of nuclear battery that uses an array of thermocouples to convert the heat released by the decay of a suitable radioactive material into electricity by the Seebeck effect. This type of generator has no moving parts and is ideal for deployment in remote and harsh environments for extended periods with no risk of parts wearing out or malfunctioning.

<i>Jupiter Icy Moons Orbiter</i> Canceled NASA orbiter mission to Jupiters icy moons

The Jupiter Icy Moons Orbiter (JIMO) was a proposed NASA spacecraft designed to explore the icy moons of Jupiter. The main target was Europa, where an ocean of liquid water may harbor alien life. Ganymede and Callisto, which are now thought to also have liquid, salty oceans beneath their icy surfaces, were also targets of interest for the probe.

<span class="mw-page-title-main">Nuclear propulsion</span> Nuclear power to propel a vehicle

Nuclear propulsion includes a wide variety of propulsion methods that use some form of nuclear reaction as their primary power source. The idea of using nuclear material for propulsion dates back to the beginning of the 20th century. In 1903 it was hypothesized that radioactive material, radium, might be a suitable fuel for engines to propel cars, planes, and boats. H. G. Wells picked up this idea in his 1914 fiction work The World Set Free. Many aircraft carriers and submarines currently use uranium fueled nuclear reactors that can provide propulsion for long periods without refueling. There are also applications in the space sector with nuclear thermal and nuclear electric engines which could be more efficient than conventional rocket engines.

<span class="mw-page-title-main">Project Prometheus</span> NASA nuclear electric propulsion project 2003-2006

Project Prometheus was established in 2003 by NASA to develop nuclear-powered systems for long-duration space missions. This was NASA's first serious foray into nuclear spacecraft propulsion since the cancellation of the SNTP project in 1995. The project was planned to design, develop, and fly multiple deep space missions to the outer planets.

A radioisotope rocket or radioisotope thermal rocket is a type of thermal rocket engine that uses the heat generated by the decay of radioactive elements to heat a working fluid, which is then exhausted through a rocket nozzle to produce thrust. They are similar in nature to nuclear thermal rockets such as NERVA, but are considerably simpler and often have no moving parts. Alternatively, radioisotopes may be used in a radioisotope electric rocket, in which energy from nuclear decay is used to generate the electricity used to power an electric propulsion system.

<span class="mw-page-title-main">Radioisotope heater unit</span> Device that provides heat through radioactive decay

A radioisotope heater unit (RHU) is a small device that provides heat through radioactive decay. They are similar to tiny radioisotope thermoelectric generators (RTG) and normally provide about one watt of heat each, derived from the decay of a few grams of plutonium-238—although other radioactive isotopes could be used. The heat produced by these RHUs is given off continuously for several decades and, theoretically, for up to a century or more.

An atomic battery, nuclear battery, radioisotope battery or radioisotope generator is a device which uses energy from the decay of a radioactive isotope to generate electricity. Like nuclear reactors, they generate electricity from nuclear energy, but differ in that they do not use a chain reaction. Although commonly called batteries, they are technically not electrochemical and cannot be charged or recharged. They are very costly, but have an extremely long life and high energy density, and so they are typically used as power sources for equipment that must operate unattended for long periods of time, such as spacecraft, pacemakers, underwater systems and automated scientific stations in remote parts of the world.

<span class="mw-page-title-main">SNAP-10A</span> Experimental nuclear-powered US Air Force satellite

SNAP-10A was a US experimental nuclear powered satellite launched into space in 1965 as part of the SNAPSHOT program. The test marked both the world's first operation of a nuclear reactor in orbit, and the first operation of an ion thruster system in orbit. It is the only fission reactor power system launched into space by the United States. The reactor stopped working after just 43 days due to a non-nuclear electrical component failure. The Systems Nuclear Auxiliary Power Program reactor was specifically developed for satellite use in the 1950s and early 1960s under the supervision of the U.S. Atomic Energy Commission.

<span class="mw-page-title-main">Plasma propulsion engine</span> Type of electric propulsion

A plasma propulsion engine is a type of electric propulsion that generates thrust from a quasi-neutral plasma. This is in contrast with ion thruster engines, which generate thrust through extracting an ion current from the plasma source, which is then accelerated to high velocities using grids/anodes. These exist in many forms. However, in the scientific literature, the term "plasma thruster" sometimes encompasses thrusters usually designated as "ion engines".

<span class="mw-page-title-main">Stirling radioisotope generator</span> Radioisotope generator based on a Stirling engine powered by a large radioisotope heater unit

A Stirling radioisotope generator (SRG) is a type of radioisotope generator based on a Stirling engine powered by a large radioisotope heater unit. The hot end of the Stirling converter reaches high temperature and heated helium drives the piston, with heat being rejected at the cold end of the engine. A generator or alternator converts the motion into electricity. Given the very constrained supply of plutonium, the Stirling converter is notable for producing about four times as much electric power from the plutonium fuel as compared to a radioisotope thermoelectric generator (RTG).

<span class="mw-page-title-main">Spacecraft electric propulsion</span> Type of space propulsion using electrostatic and electromagnetic fields for acceleration

Spacecraft electric propulsion is a type of spacecraft propulsion technique that uses electrostatic or electromagnetic fields to accelerate mass to high speed and thus generating thrust to modify the velocity of a spacecraft in orbit. The propulsion system is controlled by power electronics.

A thermal rocket is a rocket engine that uses a propellant that is externally heated before being passed through a nozzle to produce thrust, as opposed to being internally heated by a redox (combustion) reaction as in a chemical rocket.

<span class="mw-page-title-main">Nuclear power in space</span> Space exploration using nuclear energy

Nuclear power in space is the use of nuclear power in outer space, typically either small fission systems or radioactive decay for electricity or heat. Another use is for scientific observation, as in a Mössbauer spectrometer. The most common type is a radioisotope thermoelectric generator, which has been used on many space probes and on crewed lunar missions. Small fission reactors for Earth observation satellites, such as the TOPAZ nuclear reactor, have also been flown. A radioisotope heater unit is powered by radioactive decay and can keep components from becoming too cold to function, potentially over a span of decades.

<span class="mw-page-title-main">Kilopower</span> NASA project aimed at producing a nuclear reactor for space

Kilopower is an experimental U.S. project to make new nuclear reactors for space travel. The project started in October 2015, led by NASA and the DoE’s National Nuclear Security Administration (NNSA). As of 2017, the Kilopower reactors were intended to come in four sizes, able to produce from one to ten kilowatts of electrical power (1–10 kWe) continuously for twelve to fifteen years. The fission reactor uses uranium-235 to generate heat that is carried to the Stirling converters with passive sodium heat pipes. In 2018, positive test results for the Kilopower Reactor Using Stirling Technology (KRUSTY) demonstration reactor were announced.

References

  1. David Buden (2011), Space Nuclear Fission Electric Power Systems: Book 3: Space Nuclear Propulsion and Power
  2. Joseph A. Angelo & David Buden (1985), Space Nuclear Power
  3. NASA/JPL/MSFC/UAH 12th Annual Advanced Space Propulsion Workshop (2001), The Safe Affordable Fission Engine (SAFE) Test Series)
  4. NASA (2010), Small Fission Power System Feasibility Study Final Report
  5. Patrick McClure & David Poston (2013), Design and Testing of Small Nuclear Reactors for Defense and Space Applications
  6. Mohamed S. El-Genk & Jean-Michel P. Tournier (2011), Uses of Liquid-Metal and Water Heat Pipes in Space Reactor Power Systems
  7. U.S. Atomic Energy Commission (1969), SNAP Nuclear Space Reactors
  8. Space.com (May 17, 2013), How Electric Spacecraft Could Fly NASA to Mars
  9. Levoy, Myron (June 1963). "Dual Electric-Nuclear Engine". American Institute of Aeronautics and Astronautics . 1 (6): 1298–1302. Bibcode:1963AIAAJ...1.1298L. doi:10.2514/3.1783 via Aerospace Research Council.
  10. Wang, Chunyun (August 31, 2003). "Design, Analysis and Optimization of the Power Conversion System for the Modular Pebble Bed Reactor System" (PDF).
  11. Technology Review, March 5, 2012: Graphene Battery Turns Ambient Heat Into Electric Current Archived 2015-12-08 at the Wayback Machine
  12. Scientific Reports, Aug. 22, 2012: Graphene-based photovoltaic cells for near-field thermal energy conversion
  13. MIT News, Oct. 7, 2011: Graphene shows unusual thermoelectric response to light