Olfactory receptor neuron

Last updated
Olfactory receptor neuron
Riechschleimhaut.svg
Labels in German. "Zellen" = "cell","riech" = "smell", "Riechnerv" = olfactory nerve, "cillien" = cilia.
Details
System Smell
Location Olfactory epithelium in the nose
ShapeBipolar sensory receptor
FunctionDetect traces of chemicals in inhaled air (sense of smell)
Neurotransmitter Glutamate [1]
Presynaptic connectionsNone
Postsynaptic connections Olfactory bulb
Identifiers
MeSH D018034
NeuroLex ID nifext_116
TH H3.11.07.0.01003
FMA 67860
Anatomical terms of neuroanatomy
Plan of olfactory neurons Gray772.png
Plan of olfactory neurons
Olfactory sensory neurons (OSNs) express odorant receptors. The axons of OSNs expressing the same odorant receptors converge onto the same glomerulus at the olfactory bulb, allowing for the organization of olfactory information. Olfactory Sensory Neurons innervating Olfactory Glomeruli.jpg
Olfactory sensory neurons (OSNs) express odorant receptors. The axons of OSNs expressing the same odorant receptors converge onto the same glomerulus at the olfactory bulb, allowing for the organization of olfactory information.

An olfactory receptor neuron (ORN), also called an olfactory sensory neuron (OSN), is a sensory neuron within the olfactory system. [2]

Contents

Structure

Humans have between 10 and 20 million olfactory receptor neurons (ORNs). [3] In vertebrates, ORNs are bipolar neurons with dendrites facing the external surface of the cribriform plate with axons that pass through the cribriform foramina with terminal end at olfactory bulbs. The ORNs are located in the olfactory epithelium in the nasal cavity. The cell bodies of the ORNs are distributed among all three of the stratified layers of the olfactory epithelium. [4]

Many tiny hair-like non-motile cilia protrude from the olfactory receptor cell's dendrites. The dendrites extend to the olfactory epithelial surface and each ends in a dendritic knob from which around 20 to 35 cilia protrude. The cilia have a length of up to 100 micrometres and with the cilia from other dendrites form a meshwork in the olfactory mucus. [5] The surface of the cilia is covered with olfactory receptors, a type of G protein-coupled receptor. Each olfactory receptor cell expresses only one type of olfactory receptor (OR), but many separate olfactory receptor cells express ORs which bind the same set of odors. The axons of olfactory receptor cells which express the same OR converge to form glomeruli in the olfactory bulb. [6]

Function

ORs, which are located on the membranes of the cilia have been classified as a complex type of ligand-gated metabotropic channels. [7] There are approximately 1000 different genes that code for the ORs, making them the largest gene family. An odorant will dissolve into the mucus of the olfactory epithelium and then bind to an OR. ORs can bind to a variety of odor molecules, with varying affinities. The difference in affinities causes differences in activation patterns resulting in unique odorant profiles. [8] [9] The activated OR in turn activates the intracellular G-protein, GOLF (GNAL), adenylate cyclase and production of cyclic AMP (cAMP) opens ion channels in the cell membrane, resulting in an influx of sodium and calcium ions into the cell, and an efflux of chloride ions. This influx of positive ions and efflux of negative ions causes the neuron to depolarize, generating an action potential.

Desensitization of olfactory neuron Desensitization of olfactory neuron.jpg
Desensitization of olfactory neuron

Desensitization

The olfactory receptor neuron has a fast working negative feedback response upon depolarization. When the neuron is depolarizing, the CNG ion channel is open allowing sodium and calcium to rush into the cell. The influx of calcium begins a cascade of events within the cell. Calcium first binds to calmodulin to form CaM. CaM will then bind to the CNG channel and close it, stopping the sodium and calcium influx. [10] CaMKII will be activated by the presence of CaM, which will phosphorylate ACIII and reduce cAMP production. [11] CaMKII will also activate phosphodiesterase, which will then hydrolyze cAMP. [12] The effect of this negative feedback response inhibits the neuron from further activation when another odor molecule is introduced.

Number of distinguishable odors

A widely publicized study suggested that humans can detect more than one trillion different odors. [13] This finding has been disputed. Critics argued that the methodology used for the estimation was fundamentally flawed, showing that applying the same argument for better-understood sensory modalities, such as vision or audition, leads to wrong conclusions. [14] Other researchers have also showed that the result is extremely sensitive to the precise details of the calculation, with small variations changing the result over dozens of orders of magnitude, possibly going as low as a few thousand. [15] The authors of the original study have argued that their estimate holds as long as it is assumed that odor space is sufficiently high-dimensional. [16]

Other animals

See also

Related Research Articles

<span class="mw-page-title-main">Cyclic guanosine monophosphate</span> Chemical compound

Cyclic guanosine monophosphate (cGMP) is a cyclic nucleotide derived from guanosine triphosphate (GTP). cGMP acts as a second messenger much like cyclic AMP. Its most likely mechanism of action is activation of intracellular protein kinases in response to the binding of membrane-impermeable peptide hormones to the external cell surface. Through protein kinases activation, cGMP can relax smooth muscle. cGMP concentration in urine can be measured for kidney function and diabetes detection.

<span class="mw-page-title-main">Olfactory bulb</span> Neural structure

The olfactory bulb is a neural structure of the vertebrate forebrain involved in olfaction, the sense of smell. It sends olfactory information to be further processed in the amygdala, the orbitofrontal cortex (OFC) and the hippocampus where it plays a role in emotion, memory and learning. The bulb is divided into two distinct structures: the main olfactory bulb and the accessory olfactory bulb. The main olfactory bulb connects to the amygdala via the piriform cortex of the primary olfactory cortex and directly projects from the main olfactory bulb to specific amygdala areas. The accessory olfactory bulb resides on the dorsal-posterior region of the main olfactory bulb and forms a parallel pathway. Destruction of the olfactory bulb results in ipsilateral anosmia, while irritative lesions of the uncus can result in olfactory and gustatory hallucinations.

An inhibitory postsynaptic potential (IPSP) is a kind of synaptic potential that makes a postsynaptic neuron less likely to generate an action potential. IPSPs were first investigated in motorneurons by David P. C. Lloyd, John Eccles and Rodolfo Llinás in the 1950s and 1960s. The opposite of an inhibitory postsynaptic potential is an excitatory postsynaptic potential (EPSP), which is a synaptic potential that makes a postsynaptic neuron more likely to generate an action potential. IPSPs can take place at all chemical synapses, which use the secretion of neurotransmitters to create cell to cell signalling. Inhibitory presynaptic neurons release neurotransmitters that then bind to the postsynaptic receptors; this induces a change in the permeability of the postsynaptic neuronal membrane to particular ions. An electric current that changes the postsynaptic membrane potential to create a more negative postsynaptic potential is generated, i.e. the postsynaptic membrane potential becomes more negative than the resting membrane potential, and this is called hyperpolarisation. To generate an action potential, the postsynaptic membrane must depolarize—the membrane potential must reach a voltage threshold more positive than the resting membrane potential. Therefore, hyperpolarisation of the postsynaptic membrane makes it less likely for depolarisation to sufficiently occur to generate an action potential in the postsynaptic neurone.

A chemoreceptor, also known as chemosensor, is a specialized sensory receptor which transduces a chemical substance to generate a biological signal. This signal may be in the form of an action potential, if the chemoreceptor is a neuron, or in the form of a neurotransmitter that can activate a nerve fiber if the chemoreceptor is a specialized cell, such as taste receptors, or an internal peripheral chemoreceptor, such as the carotid bodies. In physiology, a chemoreceptor detects changes in the normal environment, such as an increase in blood levels of carbon dioxide (hypercapnia) or a decrease in blood levels of oxygen (hypoxia), and transmits that information to the central nervous system which engages body responses to restore homeostasis.

<span class="mw-page-title-main">Mushroom bodies</span> Pair of structures in the brains of some arthropods and annelids

The mushroom bodies or corpora pedunculata are a pair of structures in the brain of arthropods, including insects and crustaceans, and some annelids. They are known to play a role in olfactory learning and memory. In most insects, the mushroom bodies and the lateral horn are the two higher brain regions that receive olfactory information from the antennal lobe via projection neurons. They were first identified and described by French biologist Félix Dujardin in 1850.

<span class="mw-page-title-main">Stimulus (physiology)</span> Detectable change in the internal or external surroundings

In physiology, a stimulus is a detectable change in the physical or chemical structure of an organism's internal or external environment. The ability of an organism or organ to detect external stimuli, so that an appropriate reaction can be made, is called sensitivity (excitability). Sensory receptors can receive information from outside the body, as in touch receptors found in the skin or light receptors in the eye, as well as from inside the body, as in chemoreceptors and mechanoreceptors. When a stimulus is detected by a sensory receptor, it can elicit a reflex via stimulus transduction. An internal stimulus is often the first component of a homeostatic control system. External stimuli are capable of producing systemic responses throughout the body, as in the fight-or-flight response. In order for a stimulus to be detected with high probability, its level of strength must exceed the absolute threshold; if a signal does reach threshold, the information is transmitted to the central nervous system (CNS), where it is integrated and a decision on how to react is made. Although stimuli commonly cause the body to respond, it is the CNS that finally determines whether a signal causes a reaction or not.

<span class="mw-page-title-main">Olfactory epithelium</span> Specialised epithelial tissue in the nasal cavity that detects odours

The olfactory epithelium is a specialized epithelial tissue inside the nasal cavity that is involved in smell. In humans, it measures 5 cm2 (0.78 sq in) and lies on the roof of the nasal cavity about 7 cm (2.8 in) above and behind the nostrils. The olfactory epithelium is the part of the olfactory system directly responsible for detecting odors.

<span class="mw-page-title-main">Glomerulus (olfaction)</span>

The glomerulus is a spherical structure located in the olfactory bulb of the brain where synapses form between the terminals of the olfactory nerve and the dendrites of mitral, periglomerular and tufted cells. Each glomerulus is surrounded by a heterogeneous population of juxtaglomerular neurons and glial cells.

<span class="mw-page-title-main">Olfactory receptor</span> Chemoreceptors expressed in cell membranes of olfactory receptor neurons

Olfactory receptors (ORs), also known as odorant receptors, are chemoreceptors expressed in the cell membranes of olfactory receptor neurons and are responsible for the detection of odorants which give rise to the sense of smell. Activated olfactory receptors trigger nerve impulses which transmit information about odor to the brain. These receptors are members of the class A rhodopsin-like family of G protein-coupled receptors (GPCRs). The olfactory receptors form a multigene family consisting of around 400 genes in humans and 1400 genes in mice.

<span class="mw-page-title-main">Cyclic nucleotide–gated ion channel</span>

Cyclic nucleotide–gated ion channels or CNG channels are ion channels that function in response to the binding of cyclic nucleotides. CNG channels are nonselective cation channels that are found in the membranes of various tissue and cell types, and are significant in sensory transduction as well as cellular development. Their function can be the result of a combination of the binding of cyclic nucleotides and either a depolarization or a hyperpolarization event. Initially discovered in the cells that make up the retina of the eye, CNG channels have been found in many different cell types across both the animal and the plant kingdoms. CNG channels have a very complex structure with various subunits and domains that play a critical role in their function. CNG channels are significant in the function of various sensory pathways including vision and olfaction, as well as in other key cellular functions such as hormone release and chemotaxis. CNG channels have also been found to exist in prokaryotes, including many spirochaeta, though their precise role in bacterial physiology remains unknown.

Molecular neuroscience is a branch of neuroscience that observes concepts in molecular biology applied to the nervous systems of animals. The scope of this subject covers topics such as molecular neuroanatomy, mechanisms of molecular signaling in the nervous system, the effects of genetics and epigenetics on neuronal development, and the molecular basis for neuroplasticity and neurodegenerative diseases. As with molecular biology, molecular neuroscience is a relatively new field that is considerably dynamic.

Visual phototransduction is the sensory transduction process of the visual system by which light is detected to yield nerve impulses in the rod cells and cone cells in the retina of the eye in humans and other vertebrates. It relies on the visual cycle, a sequence of biochemical reactions in which a molecule of retinal bound to opsin undergoes photoisomerization, initiates a cascade that signals detection of the photon, and is indirectly restored to its photosensitive isomer for reuse. Phototransduction in some invertebrates such as fruit flies relies on similar processes.

<span class="mw-page-title-main">Mitral cell</span> Neurons that are part of the olfactory system

Mitral cells are neurons that are part of the olfactory system. They are located in the olfactory bulb in the mammalian central nervous system. They receive information from the axons of olfactory receptor neurons, forming synapses in neuropils called glomeruli. Axons of the mitral cells transfer information to a number of areas in the brain, including the piriform cortex, entorhinal cortex, and amygdala. Mitral cells receive excitatory input from olfactory sensory neurons and external tufted cells on their primary dendrites, whereas inhibitory input arises either from granule cells onto their lateral dendrites and soma or from periglomerular cells onto their dendritic tuft. Mitral cells together with tufted cells form an obligatory relay for all olfactory information entering from the olfactory nerve. Mitral cell output is not a passive reflection of their input from the olfactory nerve. In mice, each mitral cell sends a single primary dendrite into a glomerulus receiving input from a population of olfactory sensory neurons expressing identical olfactory receptor proteins, yet the odor responsiveness of the 20-40 mitral cells connected to a single glomerulus is not identical to the tuning curve of the input cells, and also differs between sister mitral cells. Odorant response properties of individual neurons in an olfactory glomerular module. The exact type of processing that mitral cells perform with their inputs is still a matter of controversy. One prominent hypothesis is that mitral cells encode the strength of an olfactory input into their firing phases relative to the sniff cycle. A second hypothesis is that the olfactory bulb network acts as a dynamical system that decorrelates to differentiate between representations of highly similar odorants over time. Support for the second hypothesis comes primarily from research in zebrafish.

Olfactory fatigue, also known as odor fatigue, olfactory adaptation, and noseblindness, is the temporary, normal inability to distinguish a particular odor after a prolonged exposure to that airborne compound. For example, when entering a restaurant initially the odor of food is often perceived as being very strong, but after time the awareness of the odor normally fades to the point where the smell is not perceptible or is much weaker. After leaving the area of high odor, the sensitivity is restored with time. Anosmia is the permanent loss of the sense of smell, and is different from olfactory fatigue.

Dysosmia is a disorder described as any qualitative alteration or distortion of the perception of smell. Qualitative alterations differ from quantitative alterations, which include anosmia and hyposmia. Dysosmia can be classified as either parosmia or phantosmia. Parosmia is a distortion in the perception of an odorant. Odorants smell different from what one remembers. Phantosmia is the perception of an odor when no odorant is present. The cause of dysosmia still remains a theory. It is typically considered a neurological disorder and clinical associations with the disorder have been made. Most cases are described as idiopathic and the main antecedents related to parosmia are URTIs, head trauma, and nasal and paranasal sinus disease. Dysosmia tends to go away on its own but there are options for treatment for patients that want immediate relief.

Hyperpolarization-activated cyclic nucleotide–gated (HCN) channels are integral membrane proteins that serve as nonselective voltage-gated cation channels in the plasma membranes of heart and brain cells. HCN channels are sometimes referred to as pacemaker channels because they help to generate rhythmic activity within groups of heart and brain cells. HCN channels are activated by membrane hyperpolarization, are permeable to Na + and K +, and are constitutively open at voltages near the resting membrane potential. HCN channels are encoded by four genes and are widely expressed throughout the heart and the central nervous system.

<span class="mw-page-title-main">Sense of smell</span> Sense that detects smells

The sense of smell, or olfaction, is the special sense through which smells are perceived. The sense of smell has many functions, including detecting desirable foods, hazards, and pheromones, and plays a role in taste.

Or83b, also known as Orco, is an odorant receptor and the corresponding gene that encodes it. The odorant receptor Or83b is not exclusively expressed in insects. Though its actual function is still a mystery, the broadly expressed Or83b has been conserved across highly divergent insect populations across 250 million years of evolution.

<span class="mw-page-title-main">Insect olfaction</span> Function of chemical receptors

Insect olfaction refers to the function of chemical receptors that enable insects to detect and identify volatile compounds for foraging, predator avoidance, finding mating partners and locating oviposition habitats. Thus, it is the most important sensation for insects. Most important insect behaviors must be timed perfectly which is dependent on what they smell and when they smell it. For example, olfaction is essential for locating host plants and hunting prey in many species of insects, such as the moth Deilephila elpenor and the wasp Polybia sericea, respectively.

Insect olfactory receptors are expressed in the cell membranes of the olfactory sensory neurons of insects. Similarly to mammalian olfactory receptors, in insects each olfactory sensory neuron expresses one type of OR, allowing the specific detection of a volatile chemical. Differently to mammalian ORs, insect ORs form a heteromer with a fixed monomer, Orco, and a variable OR monomer, which confers the odour specificity.

References

  1. Berkowicz, D. A.; Trombley, P. Q.; Shepherd, G. M. (1994). "Evidence for glutamate as the olfactory receptor cell neurotransmitter". Journal of Neurophysiology. 71 (6): 2557–61. doi:10.1152/jn.1994.71.6.2557. PMID   7931535.
  2. Vermeulen, A; Rospars, J. P. (1998). "Dendritic integration in olfactory sensory neurons: A steady-state analysis of how the neuron structure and neuron environment influence the coding of odor intensity". Journal of Computational Neuroscience. 5 (3): 243–66. doi:10.1023/A:1008826827728. PMID   9663551. S2CID   19598225.
  3. Saladin, Kenneth (2012). Anatomy & physiology : the unity of form and function (6th ed.). McGraw-Hill. p. 593. ISBN   978-0073378251.
  4. Cunningham, A.M.; Manis, P.B.; Reed, R.R.; Ronnett, G.V. (1999). "Olfactory receptor neurons exist as distinct subclasses of immature and mature cells in primary culture". Neuroscience. 93 (4): 1301–12. doi: 10.1016/s0306-4522(99)00193-1 . PMID   10501454. S2CID   23634746.
  5. McClintock, TS; Khan, N; Xie, C; Martens, JR (5 December 2020). "Maturation of the Olfactory Sensory Neuron and Its Cilia". Chemical Senses. 45 (9): 805–822. doi:10.1093/chemse/bjaa070. PMC   8133333 . PMID   33075817.
  6. McEwen, D. P (2008). "Olfactory cilia: our direct neuronal connection to the external world". Curr. Top. Dev. Biol. Current Topics in Developmental Biology. 85: 333–370. doi:10.1016/S0070-2153(08)00812-0. ISBN   9780123744531. PMID   19147011.
  7. Touhara, Kazushige (2009). "Insect Olfactory Receptor Complex Functions as a Ligand-gated Ionotropic Channel". Annals of the New York Academy of Sciences. 1170 (1): 177–80. Bibcode:2009NYASA1170..177T. doi:10.1111/j.1749-6632.2009.03935.x. PMID   19686133. S2CID   6336906.
  8. Bieri, S.; Monastyrskaia, K; Schilling, B (2004). "Olfactory Receptor Neuron Profiling using Sandalwood Odorants". Chemical Senses. 29 (6): 483–7. doi: 10.1093/chemse/bjh050 . PMID   15269120.
  9. Fan, Jinhong; Ngai, John (2001). "Onset of Odorant Receptor Gene Expression during Olfactory Sensory Neuron Regeneration". Developmental Biology. 229 (1): 119–27. doi: 10.1006/dbio.2000.9972 . PMID   11133158.
  10. Bradley, J; Reuter, D; Frings, S (2001). "Facilitation of calmodulinmediated odor adaptation by cAMP-gated channel subunits". Science. 294 (5549): 2176–2178. Bibcode:2001Sci...294.2176B. doi:10.1126/science.1063415. PMID   11739960. S2CID   13357941.
  11. Wei, J; Zhao, AZ; Chan, GC; Baker, LP; Impey, S; Beavo, JA; Storm, DR (1998). "Phosphorylation and inhibition of olfactory adenylyl cyclase by CaM kinase II in Neurons: a mechanism for attenuation of olfactory signals". Neuron. 21 (3): 495–504. doi: 10.1016/s0896-6273(00)80561-9 . PMID   9768837. S2CID   9860137.
  12. Yan, C; Zhao, AZ; Bentley, JK; Loughney, K; Ferguson, K; Beavo, JA (1995). "Molecular cloning and characterization of a calmodulin-dependent phosphodiesterase enriched in olfactory sensory neurons". Proc Natl Acad Sci USA. 92 (21): 9677–9681. Bibcode:1995PNAS...92.9677Y. doi: 10.1073/pnas.92.21.9677 . PMC   40865 . PMID   7568196.
  13. Bushdid, C.; Magnasco, M. O.; Vosshall, L. B.; Keller, A. (2014). "Humans Can Discriminate More than 1 Trillion Olfactory Stimuli". Science. 343 (6177): 1370–2. Bibcode:2014Sci...343.1370B. doi:10.1126/science.1249168. PMC   4483192 . PMID   24653035.
  14. Meister, Markus (2015). "On the dimensionality of odor space". eLife. 4: e07865. doi: 10.7554/eLife.07865 . PMC   4491593 . PMID   26151672.
  15. Gerkin, Richard C.; Castro, Jason B. (2015). "The number of olfactory stimuli that humans can discriminate is still unknown". eLife. 4: e08127. doi: 10.7554/eLife.08127 . PMC   4491703 . PMID   26151673.
  16. Magnasco, Marcelo O.; Keller, Andreas; Vosshall, Leslie B. (2015). "On the dimensionality of olfactory space". doi: 10.1101/022103 .{{cite journal}}: Cite journal requires |journal= (help)