Orthoreovirus

Last updated
Orthoreovirus
Viruses-10-00481-g001.ORV.png
Cryo-EM of the protein structure of an orthoreovirus capsid
Virus classification OOjs UI icon edit-ltr.svg
(unranked): Virus
Realm: Riboviria
Kingdom: Orthornavirae
Phylum: Duplornaviricota
Class: Resentoviricetes
Order: Reovirales
Family: Sedoreoviridae
Subfamily: Spinareovirinae
Genus:Orthoreovirus
Species

Orthoreovirus is a genus of viruses, in the family Reoviridae , in the subfamily Spinareovirinae . Vertebrates serve as natural hosts. There are ten species in this genus. Diseases associated with this genus include mild upper respiratory tract disease, gastroenteritis, and biliary atresia. Mammalian orthoreovirus 3 (strain dearing-T3D) induces cell death preferentially in transformed cells and therefore displays inherent oncolytic properties. [1] [2]

Contents

History

The name "orthoreovirus" comes from the Greek word ortho, meaning "straight" and the reovirus, which comes from taking the letters: R, E, and O from "respiratory enteric orphan virus". The Orthoreovirus was named an orphan virus because it was not known to be associated with any known disease. [3] It was discovered in the early 1950s when it was isolated from the respiratory as well as gastrointestinal tracts of both sick and healthy individuals [4]

Classification

Orthoreovirus is part of the family Reoviridae . Its genome is composed of segmented double-stranded RNA (dsRNA), thus it is classified as a group III virus according to the Baltimore classification system of viruses. This family of viruses is taxonomically classified into 15 distinct genera. These genera are sorted out taking into account the number of dsRNA genomes. The Orthoreovirus genus has 10 segments that have been isolated from a large range of hosts including mammals, birds, and reptiles. These genera are further divided into two phenotypic groups: fusogenic and non-fusogenic. The way that they are determined to belong to a specific group is if the virus is able to cause multinucleated cells known as syncytial cells. According to this classification, mammalian orthoreoviruses (MRV) are known to be non-fusogenic, meaning it does not produce syncytia, while other members of this genus are fusogenic, such as avian orthoreoviruses (ARV), baboon orthoreoviruses (BRV), reptilian orhtoreoviruses (RRV). [3]

Taxonomy

The following ten species are assigned to the genus: [2]

Structure

Mammalian orthoreovirus virions are non-enveloped with icosahedral symmetry created by a double-layered capsid reaching about 80 nm wide. Each capsid contains 10 segments of double stranded RNA (dsRNA) genome. [5] The inner capsid or core particle (T=2) contains five different proteins: σ2, λ1, λ2, λ3, and μ2 and is approximately 70 nm in diameter. [6] One hundred and twenty copies of the λ1 protein arranged in 12 decameric units make up the shell of the inner capsid structure. This shell is stabilized by one hundred and fifty copies of the σ2 protein that 'clamp' adjacent λ1 monomers together. At the 12 five-fold axes of symmetry, pentamers of the λ2 protein form turret-like structures that protrudes from the surface of the shell. In the center of the λ2 turret a channel allows viral mRNAs to be extruded during transcription. The channel is 70Å at its base and 15Å at its narrowest point. The core also contains within it twelve copies of λ3, the RNA-dependent RNA polymerase. One λ3 protein is found slightly offset from each of the twelve pentameric λ2 turrets. Closely associated with λ3 are one or two copies of μ2, a transcriptase cofactor. μ2 has been found to have some enzymatic functions, such as NTPase activity. The λ3 protein is responsible for transcription of the double-stranded RNA genome segments. Each transcript is threaded through the λ2 pentameric turret as it is being extruded. Guanylyltransferase enzymatic activity in the λ2 turret adds a 5' guanosine cap to the extruded mRNA. In addition, two methyltransferase domains found in the λ2 structure act to methylate the 7N position of the added guanosine and the 2' O of the first templated nucleotide, which in all cases is also a guanosine. The outer capsid (T=13) is composed of μ1 and σ3 proteins with λ2, in compound with σ1, interspersed around the capsid. [7] It has been proposed that λ2 is involved in replication due to its placement at the fivefold axes and its ability to interact with λ3 in solution. [8] σ1, a filamentous trimer extruding from the outer capsid, is responsible for cell attachment by interacting with sialic acid and other entry receptors. μ1 and σ3 are both involved in the attachment and thus entry of the virus via receptor-mediated endocytosis involving the formation of clathrin-coated pits. [7] [9]

GenusStructureSymmetryCapsidGenomic arrangementGenomic segmentation
OrthoreovirusIcosahedralT=13, T=2Non-envelopedLinearSegmented

Strains

The only orthoreovirus to not produce syncytia, mammalian orthoreoviruses have the capability of infecting all mammals, but do not cause disease, except in young populations enabling them to be studied frequently as a model for viral replication and pathogenesis. [9] [10]

This orthoreovirus has been extracted from the heart blood of a fruit bat (Pteropus policephalus) in Australia with different viruses being isolated from different species, such as the flying fox (Pteropus hypomelanus) which have been found to cause respiratory infections in humans in Southeast Asia. [11] The Nelson Bay Orthoreovirus, like the Avian orthoreovirus, has 3 open reading frames (ORFs) which encode for three different proteins: P10 which promotes syncytia formation, P17, and σC involved in cell attachment. [10]

The syncytia inducing capabilities of this class of orthoreoviruses combined with their association to encephalitis in baboons, distinguish them from other mammalian orthoreoviruses. [12] While these viruses have the signature Orthoreovirus genome, they have not been found to encode for a cell attachment protein (σC), they do not encode any S-class genome segments, and are organized differently from the other species of fusogenic orthoreoviruses. [13] The BRV genome contains 2 ORFs and contains two proteins, p15 and p16, that are not homologous to known viral or cellular proteins; however, p15 has been found to be the cell fusion protein in BRV. [13]

The Avian orthoreovirus has a similar structure compared to the Mammalian Orthoreovirus with the differences mainly existing in the proteins that it encodes: 10 structural proteins and 4 non-structural proteins. However, these proteins have not been studied in depth, so there is some skepticism regarding their exact functions. [14] [15] The pathogenesis of this virus has been studied in an attempt to determine the pathway of inducing apoptosis. Avian orthoreovirus induces apoptosis by what has been proposed as an upregulation of p53 and Bax, a mitochondria-mediated pathway. [14] P17 has also been found to play a role in growth retardation involved in the p53 pathway. [15] Avian Orthoreoviruses have been found to cause diseases in poultry including chronic respiratory disease, malabsorption syndrome, and arthritis representing economic losses that make this virus particularly important to study. [14]

These orthoreoviruses were first isolated in 1987 from a moribund python (Python regius) and was found to cause high levels of syncytium formation but did not cause hemagglutination in human red blood cells (RBCs). [16] In reptiles the virus has been found widely but is not necessarily associated with any specific disease. [16] The virus has been found to have 2 ORFs encoding for p14, a cell fusion protein and σC. [16] RRVs belong to the fusogenic subgroup and has only recently been classified as a distinct subgroup of orthoreoviruses. [17]

Also known as Piscine reovirus or PRV, was initially discovered in Atlantic salmon and subsequently in Pacific salmon and is associated with Heart and Skeletal Muscle Inflammation (HSMI) [18] [19] [20]

Infection and transmission

Transmission of the virus is either through the fecal–oral route or through respiratory droplets. The virus is transmitted horizontally and only known to cause disease in vertebrates. Different levels of virulence may be observed depending on the strain of orthoreovirus. Species that are known to become infected with the virus include: humans, birds, cattle, monkeys, sheep, swine, baboons, and bats [21]

Replication

Replication occurs in the cytoplasm of the host cell. The following lists the replication cycle of the virus from attachment to egress of the new virus particle ready to infect next host cell.

Attachment occurs with the aid of the virus σ1 protein. This is a filamentous trimer protein that projects out of the outer capsid of the virus. There are two receptors for the virus on the host cell. There is the junctional adhesion molecule-A, which is a serotype-independent receptor as well as the sialic acid coreceptor. [9] Viral proteins μ1 and σ3 are responsible for attachment by binding to the receptors. After the attachment to the receptors, entry to the host cell occurs via receptor-mediated endocytosis through the aid of clathrin coated pits.

Once inside the host cell, the virus must find a way to uncoat. The virus particles enter the cell in a structure known as an endosome (also called an endolysosome). Disassembly is a stepwise process. Uncoating requires a low pH, which is provided by the help of endocytic proteases. Acidification of the endosome removes the outer-capsid protein σ3. This removal allows membrane-penetration mediator μ1 to be exposed and attachment protein σ1 goes through a conformational change. After uncoating is completed, the active virus is released in the cytoplasm where replication of the genome and virion takes place. [9]

Replication of the virus takes places in the cytoplasm of the host cell. Since the genome of this virus is dsRNA, early transcription of the genome must take place inside the capsid where it is safe and will not be degraded by the host cell. dsRNA inside of a cell is a tip off to the immune system that the cell is infected with a virus, since dsRNA does not occur in the normal replication of a cell. As transcription occurs with the aid of viral polymerase, protein λ3 serves as the RNA-dependent RNA polymerase, [8] full strands of positive sense single stranded RNA (mRNA) are synthesized from each of the dsRNA segments. Viral protein, μ2, is known to be a transcriptase cofactor during transcription. It has been determined that this protein has some enzymatic functions such as NTPase activity, capping the mRNA transcript, even serving as RNA helicase to separate the dsRNA strands. [8] [22] The viral helicase comes from protein λ3 These mRNA now are able to go into the cytoplasm to be translated into protein. The viral protein gyanyltransferase λ2 is responsible for capping the viral mRNA. Mammalian orthoreovirus mRNA transcripts have a short 5’ un translated region (UTR), do not have 3’ poly A tails, and may even lack 5’ caps during late post-infection. [23] Thus is it not known how exactly how these uncapped versions of viral mRNA are able to use host cell ribosome to aid in translation. To be able to produce the genome, positive sense RNAs serve as the template strand to make negative sense RNA. The positive and negative strands will base-pair to create the dsRNA genome of the virus. [24]

The assembly of new virion occurs in sub-viral particles in the cytoplasm. [24] Since this virus has two capsids, each capsid, T13 (outer capsid) and T2 (inner capsid) need to be able to self-assemble to form the virus particle. It is known that the assembly of T13 capsid is dependent on viral protein σ3. This allows the formation of heterohexameric complexes to be made. The T2 capsid proteins of orthoreovirus need the co-expression of both the T2 protein and the nodular σ2 protein to stabilize the structure and aid in assembly. [25] Positive and negative strands of RNA produced during the transcription state must base pair correctly in order to serve as the genome in the newly formed virus particle.

After virus has fully assembled and matured, the newly formed virus particle is released. It is unknown how they exit the host cell, but it thought that this is done once the host cell has died and disintegrated, allowing for easy exit of newly formed virus. [26]

GenusHost detailsTissue tropismEntry detailsRelease detailsReplication siteAssembly siteTransmission
OrthoreovirusVertebratesEpithelium: intestinal; epithelium:bile duct; epithelium: lung; leukocytes; endothelium: CNSClathrin-mediated endocytosisCell deathCytoplasmCytoplasmAerosol; oral-fecal

Signs and symptoms

Mammalian orthoreovirus does not really cause a significant disease in humans. Even though the virus is fairly common, the infection produced is either asymptomatic or causes a mild disease which is self-limiting in the gastrointestinal tract and respiratory region for children and infants. Symptoms are similar to what a person might have when they have the common cold, such as a low-grade fever and pharyngitis. However, in other animals such as baboons and reptiles, other known orthoreoviruses fusogenic strains can cause more serious illness. In baboons it can cause neurological illness while in reptiles it can be the cause of pneumonia. In birds this virus may even cause death. [27]

Pathophysiology

Members of the Orthoreovirus genus have been known to cause apoptosis in host cells, and have thus been studied fairly extensively for this very purpose. [28] Mammalian orthoreoviruses induce apoptosis via the activation of several death receptors—TNFR, TRAIL, and Fas—while avian orthoreovirus has been found to use the up-regulation of p53 to induce apoptosis. [7] Both of these strains have also been found to be involved in G2/M cell cycle arrest. [7] The avian orthoreovirus has also been proven to promote autophagy of the host which could contribute to disease in a similar manner as apoptosis. [7] [29] The inhibition of the innate immune response has also been seen in mammalian and avian orthoreoviruses. [30] Other strains of the orthoreoviruses have not been studied as frequently as mammalian and avian strains resulting in a lack of understanding in the pathophysiology of those strains, though it can be assumed they act in similar ways.

Oncolytic properties

One of the most relevant uses for the mammalian orthoreoviruses are the manipulation of their oncolytic properties for their use in cancer treatments. This particular use of reoviruses was discovered in 1995 by Dr Patrick Lee who discovered these viruses could kill those cells that contained an over-activated Ras pathway, often a hallmark of cancerous cells. [31] These viruses are particularly ideal for these sort of therapies because they are self-limiting while simultaneously harnessing the ability to induce apoptosis in tumor cells exclusively. [32] One of the more widely used strains for these anti-cancer clinical trials is the serotype 3 dearing strain, Resolysin, used in phase I-III trials. [33] A variety of cancers have been treated with this therapy, either alone or in tandem with others, including multiple myeloma, ovarian epithelial, and pancreatic cancers. [33] A recent clinical trial demonstrated that mammalian orthoreovirus was effective in inducing apoptosis in hypoxic prostate tumor cells with hopes of success in clinical trials. [34]

Diagnosis

To be able to perform a proper diagnosis of this pathogen is it important to take samples from the suspected infected individuals such as a stool, throat, or nasopharyngeal sample. There are various tests that can be done on these samples to see if a person is infected. Viral antigen can be detected by performing an assay. A serological assay can also be performed on the sample to look for virus-specific antibodies present in the sample, thus showing that the person is trying to combat the virus. The virus can be isolated in culture through the use of mouse-L fibroblasts, green monkey kidney cells, as well as HeLa cells. [35]

See also

Related Research Articles

<i>Paramyxoviridae</i> Family of viruses

Paramyxoviridae is a family of negative-strand RNA viruses in the order Mononegavirales. Vertebrates serve as natural hosts. Diseases associated with this family include measles, mumps, and respiratory tract infections. The family has four subfamilies, 17 genera, three of which are unassigned to a subfamily, and 78 species.

<span class="mw-page-title-main">Poliovirus</span> Enterovirus

Poliovirus, the causative agent of polio, is a serotype of the species Enterovirus C, in the family of Picornaviridae. There are three poliovirus serotypes: types 1, 2, and 3.

<i>Influenza A virus</i> Species of virus

Influenza A virus (IAV) is a pathogen that causes the flu in birds and some mammals, including humans. It is an RNA virus whose subtypes have been isolated from wild birds. Occasionally, it is transmitted from wild to domestic birds, and this may cause severe disease, outbreaks, or human influenza pandemics.

<span class="mw-page-title-main">Sedoreoviridae</span> Family of viruses

Sedoreoviridae is a family of double-stranded RNA viruses. Member viruses have a wide host range, including vertebrates, invertebrates, plants, protists and fungi. They lack lipid envelopes and package their segmented genome within multi-layered capsids. Lack of a lipid envelope has allowed three-dimensional structures of these large complex viruses to be obtained, revealing a structural and likely evolutionary relationship to the cystovirus family of bacteriophage. There are currently 97 species in this family, divided among 15 genera in two subfamilies. Reoviruses can affect the gastrointestinal system and respiratory tract. The name "reo-" is an acronym for "respiratory enteric orphan" viruses. The term "orphan virus" refers to the fact that some of these viruses have been observed not associated with any known disease. Even though viruses in the family Reoviridae have more recently been identified with various diseases, the original name is still used.

<span class="mw-page-title-main">Rubella virus</span> Species of virus

Rubella virus (RuV) is the pathogenic agent of the disease rubella, transmitted only between humans via the respiratory route, and is the main cause of congenital rubella syndrome when infection occurs during the first weeks of pregnancy.

Viral pathogenesis is the study of the process and mechanisms by which viruses cause diseases in their target hosts, often at the cellular or molecular level. It is a specialized field of study in virology.

<i>Gammaretrovirus</i> Genus of viruses

Gammaretrovirus is a genus in the Retroviridae family. Example species are the murine leukemia virus and the feline leukemia virus. They cause various sarcomas, leukemias and immune deficiencies in mammals, reptiles and birds.

<i>Aphthovirus</i> Genus of viruses

Aphthovirus is a viral genus of the family Picornaviridae. Aphthoviruses infect split-hooved animals, and include the causative agent of foot-and-mouth disease, Foot-and-mouth disease virus (FMDV). There are seven FMDV serotypes: A, O, C, SAT 1, SAT 2, SAT 3 and Asia 1, and four non-FMDV serotypes belonging to three additional species Bovine rhinitis A virus (BRAV), Bovine rhinitis B virus (BRBV) and Equine rhinitis A virus (ERAV).

<i>Cypovirus</i> Genus of viruses

Cypovirus, short for cytoplasmic polyhedrosis virus, is a genus of double-stranded RNA viruses in the family Reoviridae and subfamily Spinareovirinae. Cypoviruses have only been isolated from insects. Diseases associated with this genus include chronic diarrhoea and pale blue iridescence in the guts of larvae. Sixteen species are placed in this genus.

<span class="mw-page-title-main">Golden shiner virus</span> Species of virus

The golden shiner virus is an aquatic virus that infects a bait fish known as the golden shiner and to a lesser extent, aquatic animals like crustaceans and molluscs. About 6 virus species have been identified in this genus since the late 1970s. It causes death through a hemorrhagic shock. Symptoms include bleeding from the back eyes and the head. The virus is 70 nm in diameter and replicates best at 20-30 degrees Celsius. The virus has properties similar to those of the pancreatic necrosis virus. This could mean that golden shiners are more susceptible in the summer.

<span class="mw-page-title-main">Double-stranded RNA viruses</span> Type of virus according to Baltimore classification

Double-stranded RNA viruses are a polyphyletic group of viruses that have double-stranded genomes made of ribonucleic acid. The double-stranded genome is used as a template by the viral RNA-dependent RNA polymerase (RdRp) to transcribe a positive-strand RNA functioning as messenger RNA (mRNA) for the host cell's ribosomes, which translate it into viral proteins. The positive-strand RNA can also be replicated by the RdRp to create a new double-stranded viral genome.

Vesivirus is a genus of viruses, in the family Caliciviridae. Swine, sea mammals, and felines serve as natural hosts. There are two species in this genus. Diseases associated with this genus include: respiratory disease, Feline calicivirus (FCV); conjunctivitis, and respiratory disease.

Avian orthoreovirus, also known as avian reovirus, is an orthoreovirus from the Reoviridae family. Infection causes arthritis and tenosynovitis in poultry. It can also cause respiratory disease.

Aichivirus A formerly Aichi virus (AiV) belongs to the genus Kobuvirus in the family Picornaviridae. Six species are apart of the genus Kobuvirus, Aichivirus A-F. Within Aichivirus A, there are six different types including human Aichi virus, canine kobuvirus, murine kobuvirus, Kathmandu sewage kobuvirus, roller kobuvirus, and feline kobuvirus. Three different genotypes are found in human Aichi virus, represented as genotype A, B, and C.

<i>Avibirnavirus</i> Genus of viruses

Avibirnavirus is a genus of viruses in family Birnaviridae. There is a single species in this genus: Infectious bursal disease virus, which infects chickens and other fowl. It causes severe inflammation of the bursa of Fabricius, and causes considerable morbidity and mortality.

This glossary of virology is a list of definitions of terms and concepts used in virology, the study of viruses, particularly in the description of viruses and their actions. Related fields include microbiology, molecular biology, and genetics.

<i>Avian metaavulavirus 2</i> Species of virus

Avian metaavulavirus 2, formerly Avian paramyxovirus 2, is a species of virus belonging to the family Paramyxoviridae and genus Metaavulavirus. The virus is a negative strand RNA virus containing a monopartite genome. Avian metaavulavirus 2 is one of nine species belonging to the genus Metaavulavirus. The most common serotype of Avulavirinae is serotype 1, the cause of Newcastle disease (ND). Avian metaavulavirus 2 has been known to cause disease, specifically mild respiratory infections in domestic poultry, including turkeys and chickens, and has many economic effects on egg production and poultry industries. The virus was first isolated from a strain in Yucaipa, California in 1956. Since then, other isolates of the virus have been isolated worldwide.

Mammalian orthoreovirus (MRV) is a double-stranded RNA virus. It is a part of the family Reoviridae, as well as the subfamily Spinareovirinae. As seen in the name, the Mammalian Ortheoreovirus infects numerous mammalian species and vertebrates which serve as natural hosts. Some diseases that occur as a result of this virus or are associated with this virus include mild upper respiratory illness, and gastrointestinal illness. Examples of these are: upper respiratory tract syndromes, gastroenteritis, biliary atresia, obstructive hydrocephalus, jaundice, alopecia, conjunctivitis, and ‘oily hair’ associated with steatorrhea.

<i>Piscine orthoreovirus</i> Species of virus

Piscine orthoreovirus (PRV) is a species in the genus Orthoreovirus that infects fish exclusively, PRV was first discovered in 2010 in farmed Atlantic salmon exhibiting Heart and Skeletal Muscle Inflammation (HSMI) and has been found present at higher concentration in fish with various diseases. These diseases include HSMI, jaundice syndrome, proliferative darkening syndrome and erythrocytic body inclusion syndrome. PRV is thought to mainly affect aquacultured and maricultured fish stocks, and recent research has been focused around the susceptibility of wild stock. However, whether PRV is virulent with respect to HSMI remains a topic of debate. PRV has been in the public eye mostly due to a potential linkage to farmed Atlantic Salmon exhibiting HSMI. Public concern has been raised regarding the possibility of open ocean-net farms transmitting PRV to wild salmon populations and being a factor in declining populations. PRV has not been confirmed to be pathogenic in wild salmon stocks.

Terence S. Dermody is an American virologisiy who is the Vira I. Heinz Distinguished Professor and Chair of Pediatrics at the University of Pittsburgh School of Medicine, where he teaches microbiology and molecular genetics. He is also the Physician-in-Chief and Scientific Director at UPMC Children's Hospital of Pittsburgh. Dermody studies fundamental mechanisms of the virus life cycle, particularly in reoviruses, to better understand the propagation of viruses, causes of disease, and possibilities for vaccine development. He is a Fellow of the American Association for the Advancement of Science.

References

  1. "Viral Zone". ExPASy. Retrieved 15 June 2015.
  2. 1 2 "Virus Taxonomy: 2020 Release". International Committee on Taxonomy of Viruses (ICTV). March 2021. Retrieved 13 May 2021.
  3. 1 2 Chua, Kaw Bing; Voon, Kenny; Crameri, Gary; Tan, Hui Siu; Rosli, Juliana; McEachern, Jennifer A.; Suluraju, Sivagami; Yu, Meng; Wang, Lin-Fa; Schwartz, Olivier (25 November 2008). "Identification and Characterization of a New Orthoreovirus from Patients with Acute Respiratory Infections". PLOS ONE. 3 (11): e3803. Bibcode:2008PLoSO...3.3803C. doi: 10.1371/journal.pone.0003803 . PMC   2583042 . PMID   19030226.
  4. Fenner, David O. White, Frank J. (1994). Medical virology (4th ed.). San Diego: Academic Press. p. 27. ISBN   9780127466422.{{cite book}}: CS1 maint: multiple names: authors list (link)
  5. Anonymous. "Viral Zone".
  6. Anonymous. "Orthoreovirus". ViralZone. Retrieved 1 October 2014.
  7. 1 2 3 4 5 Anonymous. "Orthoreovirus". Viral Zone. Retrieved 1 October 2014.
  8. 1 2 3 Dryden, Kelly A; Farsetta, Diane L; Wang, Guoji; Keegan, Jesse M; Fields, Bernard N; Baker, Timothy S; Nibert, Max L (May 1998). "Internal/Structures Containing Transcriptase-Related Proteins in Top Component Particles of Mammalian Orthoreovirus". Virology. 245 (1): 33–46. doi: 10.1006/viro.1998.9146 . PMID   9614865.
  9. 1 2 3 4 Guglielmi, KM; Johnson, EM; Stehle, T; Dermody, TS (2006). Attachment and cell entry of mammalian orthoreovirus. Current Topics in Microbiology and Immunology. Vol. 309. pp. 1–38. doi:10.1007/3-540-30773-7_1. ISBN   978-3-540-30772-3. PMID   16909895.
  10. 1 2 Pritchard, L. I.; Chua, K. B.; Cummins, D.; Hyatt, A.; Crameri, G.; Eaton, B. T.; Wang, L.-F. (6 October 2005). "Pulau virus; a new member of the Nelson Bay orthoreovirus species isolated from fruit bats in Malaysia". Archives of Virology. 151 (2): 229–239. doi:10.1007/s00705-005-0644-4. PMID   16205863. S2CID   19562111.
  11. Yamanaka, Atsushi; Iwakiri, Akira; Yoshikawa, Tomoki; Sakai, Kouji; Singh, Harpal; Himeji, Daisuke; Kikuchi, Ikuo; Ueda, Akira; Yamamoto, Seigo; Miura, Miho; Shioyama, Yoko; Kawano, Kimiko; Nagaishi, Tokiko; Saito, Minako; Minomo, Masumi; Iwamoto, Naoyasu; Hidaka, Yoshio; Sohma, Hirotoshi; Kobayashi, Takeshi; Kanai, Yuta; Kawagishi, Takehiro; Nagata, Noriyo; Fukushi, Shuetsu; Mizutani, Tetsuya; Tani, Hideki; Taniguchi, Satoshi; Fukuma, Aiko; Shimojima, Masayuki; Kurane, Ichiro; et al. (25 March 2014). "Imported Case of Acute Respiratory Tract Infection Associated with a Member of Species Nelson Bay Orthoreovirus". PLOS ONE. 9 (3): e92777. Bibcode:2014PLoSO...992777Y. doi: 10.1371/journal.pone.0092777 . PMC   3965453 . PMID   24667794.
  12. Duncan, R; Murphy, FA; Mirkovic, RR (1 October 1995). "Characterization of a novel syncytium-inducing baboon reovirus". Virology. 212 (2): 752–6. doi: 10.1006/viro.1995.1536 . PMID   7571448.
  13. 1 2 Day, JM (July 2009). "The diversity of the orthoreoviruses: molecular taxonomy and phylogentic divides". Infection, Genetics and Evolution. 9 (4): 390–400. doi:10.1016/j.meegid.2009.01.011. PMID   19460305.
  14. 1 2 3 Chulu, JL; Lee, LH; Lee, YC; Liao, SH; Lin, FL; Shih, WL; Liu, HJ (11 May 2007). "Apoptosis induction by avian reovirus through p53 and mitochondria-mediated pathway". Biochemical and Biophysical Research Communications. 356 (3): 529–35. doi:10.1016/j.bbrc.2007.02.164. PMID   17379188.
  15. 1 2 Liu, Hung-Jen; Lin, Ping-Yuan; Lee, Jeng-Woei; Hsu, Hsue-Yin; Shih, Wen-Ling (October 2005). "Retardation of cell growth by avian reovirus p17 through the activation of p53 pathway". Biochemical and Biophysical Research Communications. 336 (2): 709–715. doi:10.1016/j.bbrc.2005.08.149. PMC   7092890 . PMID   16143310.
  16. 1 2 3 Day, G; et al. (July 2009). "The diversity of the orthoreoviruses: Molecular taxonomy and phylogentic divides". Infection, Genetics and Evolution. 9 (4): 390–400. doi:10.1016/j.meegid.2009.01.011. PMID   19460305.
  17. Duncan, Roy; Corcoran, Jennifer; Shou, Jingyun; Stoltz, Don (February 2004). "Reptilian reovirus: a new fusogenic orthoreovirus species". Virology. 319 (1): 131–140. doi: 10.1016/j.virol.2003.10.025 . PMID   14967494.
  18. Palacios, G; et al. (2010). "Heart and skeletal muscle inflammation of farmed Salmon is associated with infection with a novel reovirus". PLOS ONE. 5 (7): e11487. Bibcode:2010PLoSO...511487P. doi: 10.1371/journal.pone.0011487 . PMC   2901333 . PMID   20634888.
  19. Wessel, Ø.; et al. (2017). "Infection with purified Piscine orthoreovirus demonstrates a causal relationship with heart and skeletal muscle inflammation in Atlantic salmon". PLOS ONE. 12 (8): e0183781. Bibcode:2017PLoSO..1283781W. doi: 10.1371/journal.pone.0183781 . PMC   5571969 . PMID   28841684.
  20. Di Cicco, E.; et al. (2018). "The same strain of Piscine orthoreovirus (PRV-1) is involved in the development of different, but related, diseases in Atlantic and Pacific Salmon in British Columbia". FACETS. 3: 599–641. arXiv: 1805.01530 . Bibcode:2018arXiv180501530D. doi:10.1139/facets-2018-0008. S2CID   22615572.
  21. "Orthoreovirus". Medical Subject Headings (MeSH). National Center for Biotechnology Information. Retrieved 6 January 2016.
  22. Kim, J; Parker, JS; Murray, KE; Nibert, ML (6 February 2004). "Nucleoside and RNA triphosphatase activities of orthoreovirus transcriptase cofactor mu2". The Journal of Biological Chemistry. 279 (6): 4394–403. doi: 10.1074/jbc.m308637200 . PMID   14613938.
  23. Sagar, V; Murray, KE (April 2014). "The mammalian orthoreovirus bicistronic M3 mRNA initiates translation using a 5' end-dependent, scanning mechanism that does not require interaction of 5'-3' untranslated regions". Virus Research. 183: 30–40. doi:10.1016/j.virusres.2014.01.018. PMC   4001737 . PMID   24486484.
  24. 1 2 Anonymous. "Orthoreovirus". Viral Zone. Retrieved 1 October 2014.
  25. editors, Michael G. Rossmann, Venigalla B. Rao (2012). Viral molecular machines (2012. ed.). New York: Springer. p. 395. ISBN   978-1-4614-0980-9.{{cite book}}: |last1= has generic name (help)CS1 maint: multiple names: authors list (link)
  26. Nibert, Max L; Duncan, Roy (2011). The Springer Index of Viruses. pp. 1611–1620. doi:10.1007/978-0-387-95919-1_264. ISBN   978-0-387-95918-4.
  27. Chua, Kaw Bing; Voon, Kenny; Yu, Meng; Keniscope, Canady; Abdul Rasid, Kasri; Wang, Lin-Fa; Fooks, Anthony R. (13 October 2011). "Investigation of a Potential Zoonotic Transmission of Orthoreovirus Associated with Acute Influenza-Like Illness in an Adult Patient". PLOS ONE. 6 (10): e25434. Bibcode:2011PLoSO...625434C. doi: 10.1371/journal.pone.0025434 . PMC   3192755 . PMID   22022394.
  28. Pruijssers, AJ; Hengel, H; Abel, TW; Dermody, TS (December 2013). "Apoptosis induction influences reovirus replication and virulence in newborn mice". Journal of Virology. 87 (23): 12980–9. doi:10.1128/jvi.01931-13. PMC   3838116 . PMID   24067960.
  29. Meng, Songshu; Jiang, Ke; Zhang, Xiaorong; Zhang, Miao; Zhou, Zhizhi; Hu, Maozhi; Yang, Rui; Sun, Chenli; Wu, Yantao (13 January 2012). "Avian reovirus triggers autophagy in primary chicken fibroblast cells and Vero cells to promote virus production". Archives of Virology. 157 (4): 661–668. doi: 10.1007/s00705-012-1226-x . PMID   22241622. S2CID   15754250.
  30. Anonymous. "Orthoreovirus".
  31. Thagard, Paul (2002). "Curing Cancer? Patrick Lee's Path to the Reovirus Treatment". International Studies in Philosophy of Science. 16: 179–193. doi:10.1080/02698590120118846. S2CID   144398897.
  32. Wollenberg, Diana JM Van Den; Hengel, Sanne K Van Den; Dautzenberg, Iris JC; Kranenburg, Onno; Hoeben, Rob C (December 2009). "Modification of mammalian reoviruses for use as oncolytic agents". Expert Opinion on Biological Therapy. 9 (12): 1509–1520. doi:10.1517/14712590903307370. PMID   19916732. S2CID   20201124.
  33. 1 2 Mandell, Douglas, and Bennett's Principles and Practice of Infectious Diseases. Churchill Livingstone. 2014. ISBN   978-1-4557-4801-3.
  34. Gupta, P; Miller, C (31 March 2012). "Mammalian orthoreovirus downregulates HIF-1a in hypoxic prostate tumor cells via RACK-1-mediated proteosomal degradation and translational inhibition". AACR: Cancer Research 2012. 72 (8).
  35. Patrick R. Murray; Ken S. Rosenthal; Michael A. Pfaller (2013). Medical microbiology (7th ed.). St. Louis, Mo.: Mosby. ISBN   9780323086929.