Phospholipase A1

Last updated
Phospholipase A1.jpg
Crystallographic structure of phospholipase A1. Red region denotes α helices, Green region denotes loops, and yellow region denotes β sheets.
Identifiers
EC no. 3.1.1.32
CAS no. 9043-29-2
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Gene Ontology AmiGO / QuickGO
Search
PMC articles
PubMed articles
NCBI proteins
phospholipase A1 member A
Identifiers
SymbolPLA1A
NCBI gene 51365
HGNC 17661
OMIM 607460
RefSeq NM_015900
UniProt Q53H76
Other data
EC number 3.1.1.32
Locus Chr. 3 q13.13-13.2
Search for
Structures Swiss-model
Domains InterPro

Phospholipase A1 (EC 3.1.1.32; systematic name: phosphatidylcholine 1-acylhydrolase) encoded by the PLA1A gene is a phospholipase enzyme which removes the 1-acyl group: [1]

Contents

phosphatidylcholine + H2O ⇌ 2-acylglycerophosphocholine + a carboxylate

It is an enzyme that resides in a class of enzymes called phospholipase that hydrolyze phospholipids into fatty acids. [2] There are four classes, separated according to the type of reaction they catalyze. In particular, phospholipase A1 (PLA1) specifically catalyzes the cleavage at the sn-1 position of phospholipids, forming a fatty acid and a lysophospholipid. [3] [4]

Phospholipase A1 cleaves phospholipid at the sn-1 position forming a lysophospholipid and a fatty acid. Phospholipase a1 mechanism.jpg
Phospholipase A1 cleaves phospholipid at the sn-1 position forming a lysophospholipid and a fatty acid.

Function

PLA1's are present in numerous species including humans, and have a variety of cellular functions that include regulation and facilitation of the production of lysophospholipid mediators, and acting as digestive enzymes. These enzymes are responsible for fast turnover rates of cellular phospholipids. [5] In addition to this, the products of the reaction catalyzed by PLA1 which are a fatty acid and a lysophospholipid are important in various biological functions such as platelet aggregation and smooth muscle contraction. [6] In addition, lysophospholipids can be found as surfactants in food techniques and cosmetics, and can be used in drug delivery. [7] Since PLA1 is found in many species, it has been found that there are different classes of this one specific enzyme based on the organism being studied. [8] [9]

Species and tissue distribution

There are many variations of PLA1, differing slightly between each organism it is present in. Most notably, it can be found in mammalian cells such as plasma of rat livers and bovine brains, and can also be found in metazoan parasites, protozoan parasites, and snake venom.

Substrate specificity

Optimum pH conditions for PLA1 activity on neutral phospholipids is around 7.5, whereas the optimal conditions for PLA1 activity on acidic phospholipids is around 4. [10] [11]

Structure

The structure of a PLA1 is a monomer that contains the following sequence: Gly-X-Ser-X-Gly, where X represents any other amino acid. The serine is considered the active site in the enzyme. [12] PLA1's also contain a catalytic triad of Ser-Asp-His, with a variety of cysteine residues needed for disulfide bond formation. The cysteine residues are responsible for key structural motifs such as the lid domain and the B9 domain, both of which are lipid binding surface loops. These two loops can vary between each PLA1. For example, a PLA1 enzyme with a long lid domain (22-23 amino acids) and a long B9 domain (18-19 amino acids) constitute an extracellular PLA1 exhibiting triacylglycerol hydrolase activity. [13] In contrast, a PLA1 enzyme that is considered more selective will have a short lid and B9 domain that span 7-12 and 12-13 amino acids, respectively.

Industrial use

Unlike other phospholipases such as PLA2, there is much that is unknown about PLA1 due to the lack of any efficient way to purify, clone, express, and characterize this enzyme. [13] PLA1 is currently commercially unavailable because of this. Lysophospholipids can be found as surfactants in food techniques and cosmetics, and can be used in drug delivery. Current research is being applied to determine suitable growth environments for PLA1 production. In one particular study, it was found that PLA1 can be produced by S. cerevisiae and A. oryzae. In these PLA1 producing cultures, increasing the nitrogen and carbon sources can lead to increase in PLA1 yields. [8]

Discovery

In the early 1900s, an observation was made, showing an accumulation of free fatty acids after incubation of pancreatic juice with phosphatidylcholine. One of the first cases of observed PLA1 activity was on 1903 when snake venom was found to alter phosphatidylcholine into lysophosphatidylcholine, which is defined as a phosphatidylcholine without one of its fatty acids. In the 1960s, it was discovered to be that enzymes catalyze this fatty acid cleavage in multiple ways, one of which is the sn-1 position. This particular reaction is catalyzed by PLA1, while the reaction at the sn-2 position is catalyzed by phospholipase A2.

See also

Related Research Articles

<span class="mw-page-title-main">Phospholipid</span> Class of lipids

Phospholipids are a class of lipids whose molecule has a hydrophilic "head" containing a phosphate group and two hydrophobic "tails" derived from fatty acids, joined by an alcohol residue. Marine phospholipids typically have omega-3 fatty acids EPA and DHA integrated as part of the phospholipid molecule. The phosphate group can be modified with simple organic molecules such as choline, ethanolamine or serine.

<span class="mw-page-title-main">Phospholipase</span> Class of enzymes that cleave phospholipids

A phospholipase is an enzyme that hydrolyzes phospholipids into fatty acids and other lipophilic substances. Acids trigger the release of bound calcium from cellular stores and the consequent increase in free cytosolic Ca2+, an essential step in calcium signaling to regulate intracellular processes. There are four major classes, termed A, B, C, and D, which are distinguished by the type of reaction which they catalyze:

<span class="mw-page-title-main">Phosphatidylcholine</span> Class of phospholipids

Phosphatidylcholines (PC) are a class of phospholipids that incorporate choline as a headgroup. They are a major component of biological membranes and can be easily obtained from a variety of readily available sources, such as egg yolk or soybeans, from which they are mechanically or chemically extracted using hexane. They are also a member of the lecithin group of yellow-brownish fatty substances occurring in animal and plant tissues. Dipalmitoylphosphatidylcholine (lecithin) is a major component of the pulmonary surfactant, and is often used in the lecithin–sphingomyelin ratio to calculate fetal lung maturity. While phosphatidylcholines are found in all plant and animal cells, they are absent in the membranes of most bacteria, including Escherichia coli. Purified phosphatidylcholine is produced commercially.

Phospholipase A<sub>2</sub> Peripheral membrane protein

The enzyme phospholipase A2 (EC 3.1.1.4, PLA2, systematic name phosphatidylcholine 2-acylhydrolase) catalyse the cleavage of fatty acids in position 2 of phospholipids, hydrolyzing the bond between the second fatty acid “tail” and the glycerol molecule:

<span class="mw-page-title-main">Glycerophospholipid</span> Class of lipids

Glycerophospholipids or phosphoglycerides are glycerol-based phospholipids. They are the main component of biological membranes. Two major classes are known: those for bacteria and eukaryotes and a separate family for archaea.

Phospholipase D (EC 3.1.4.4, lipophosphodiesterase II, lecithinase D, choline phosphatase, PLD; systematic name phosphatidylcholine phosphatidohydrolase) is an enzyme of the phospholipase superfamily that catalyses the following reaction

Taipoxin is a potent myo- and neurotoxin that was isolated from the venom of the coastal taipan Oxyuranus scutellatus or also known as the common taipan. Taipoxin like many other pre-synaptic neurotoxins are phospholipase A2 (PLA2) toxins, which inhibit/complete block the release of the motor transmitter acetylcholine and lead to death by paralysis of the respiratory muscles (asphyxia). It is the most lethal neurotoxin isolated from any snake venom to date.

<span class="mw-page-title-main">Phosphatidylethanolamine</span> Group of chemical compounds

Phosphatidylethanolamine (PE) is a class of phospholipids found in biological membranes. They are synthesized by the addition of cytidine diphosphate-ethanolamine to diglycerides, releasing cytidine monophosphate. S-Adenosyl methionine can subsequently methylate the amine of phosphatidylethanolamines to yield phosphatidylcholines.

The lysophospholipid receptor (LPL-R) group are members of the G protein-coupled receptor family of integral membrane proteins that are important for lipid signaling. In humans, there are eleven LPL receptors, each encoded by a separate gene. These LPL receptor genes are also sometimes referred to as "Edg".

The enzyme lysophospholipase (EC 3.1.1.5) catalyzes the reaction

<span class="mw-page-title-main">Phosphatidate phosphatase</span>

The enzyme phosphatidate phosphatase (PAP, EC 3.1.3.4) is a key regulatory enzyme in lipid metabolism, catalyzing the conversion of phosphatidate to diacylglycerol:

<span class="mw-page-title-main">Phospholipase C</span> Class of enzymes

Phospholipase C (PLC) is a class of membrane-associated enzymes that cleave phospholipids just before the phosphate group (see figure). It is most commonly taken to be synonymous with the human forms of this enzyme, which play an important role in eukaryotic cell physiology, in particular signal transduction pathways. Phospholipase C's role in signal transduction is its cleavage of phosphatidylinositol 4,5-bisphosphate (PIP2) into diacyl glycerol (DAG) and inositol 1,4,5-trisphosphate (IP3), which serve as second messengers. Activators of each PLC vary, but typically include heterotrimeric G protein subunits, protein tyrosine kinases, small G proteins, Ca2+, and phospholipids.

<span class="mw-page-title-main">PLA2G6</span> Protein-coding gene in the species Homo sapiens

85 kDa calcium-independent phospholipase A2, also known as 85/88 kDa calcium-independent phospholipase A2, Group VI phospholipase A2, Intracellular membrane-associated calcium-independent phospholipase A2 beta, or Patatin-like phospholipase domain-containing protein 9 is an enzyme that in humans is encoded by the PLA2G6 gene.

<span class="mw-page-title-main">PLA2G5</span> Protein-coding gene in the species Homo sapiens

Calcium-dependent phospholipase A2 is an enzyme that in humans is encoded by the PLA2G5 gene.

<span class="mw-page-title-main">PAFAH2</span> Protein-coding gene in the species Homo sapiens

Platelet-activating factor acetylhydrolase 2, cytoplasmic is an enzyme that in humans is encoded by the PAFAH2 gene. It is one of several PAF acetylhydrolases.

N-acyl phosphatidylethanolamine phospholipase D (NAPE-PLD) is an enzyme that catalyzes the release of N-acylethanolamine (NAE) from N-acyl-phosphatidylethanolamine (NAPE). This is a major part of the process that converts ordinary lipids into chemical signals like anandamide and oleoylethanolamine. In humans, the NAPE-PLD protein is encoded by the NAPEPLD gene.

<span class="mw-page-title-main">Lipase</span> Class of enzymes

Lipase is a family of enzymes that catalyzes the hydrolysis of fats. Some lipases display broad substrate scope including esters of cholesterol, phospholipids, and of lipid-soluble vitamins and sphingomyelinases; however, these are usually treated separately from "conventional" lipases. Unlike esterases, which function in water, lipases "are activated only when adsorbed to an oil–water interface". Lipases perform essential roles in digestion, transport and processing of dietary lipids in most, if not all, organisms.

<span class="mw-page-title-main">Lysophosphatidylcholine</span> Class of compounds

Lysophosphatidylcholines, also called lysolecithins, are a class of chemical compounds which are derived from phosphatidylcholines.

<span class="mw-page-title-main">1-Lysophosphatidylcholine</span>

2-acyl-sn-glycero-3-phosphocholines are a class of phospholipids that are intermediates in the metabolism of lipids. Because they result from the hydrolysis of an acyl group from the sn-1 position of phosphatidylcholine, they are also called 1-lysophosphatidylcholine. The synthesis of phosphatidylcholines with specific fatty acids occurs through the synthesis of 1-lysoPC. The formation of various other lipids generates 1-lysoPC as a by-product.

<span class="mw-page-title-main">MBOAT7</span> Protein-coding gene in the species Homo sapiens

Lysophospholipid acyltransferase 7 also known as membrane-bound O-acyltransferase domain-containing protein 7 (MBOAT7) is an enzyme that in humans is encoded by the MBOAT7 gene. It is homologous to other membrane-bound O-acyltransferases.

References

  1. Phospholipase+A1 at the U.S. National Library of Medicine Medical Subject Headings (MeSH)
  2. DeSilva NS, Quinn PA (1999). "Characterization of phospholipase A1, A2, C activity in Ureaplasma urealyticum membranes". Mol. Cell. Biochem. 201 (1–2): 159–67. doi:10.1023/A:1007082507407. PMID   10630635. S2CID   22101516.
  3. Richmond GS, Smith TK (2011). "Phospholipases A1". International Journal of Molecular Sciences. 12 (1): 588–612. doi: 10.3390/ijms12010588 . PMC   3039968 . PMID   21340002.
  4. Scandella CJ, Kornberg A (November 1971). "A membrane-bound phospholipase A1 purified from Escherichia coli". Biochemistry. 10 (24): 4447–56. doi:10.1021/bi00800a015. PMID   4946924.
  5. Franson R, Waite M, LaVia M (May 1971). "Identification of phospholipase A1 and A2 in the soluble fraction of rat liver lysosomes". Biochemistry. 10 (10): 1942–6. doi:10.1021/bi00786a031. PMID   4397924.
  6. Inoue K, Arai H, Aoki J (2004). "Phospholipase A1 Structures, Physiological and Patho-physiological Roles in Mammals". In Müller G, Petry S (eds.). Lipases and phospholipases in drug development : from biochemistry to molecular pharmacology . Weinheim: Wiley-VCH. p.  23. doi:10.1002/3527601910.ch2. ISBN   9783527306770.
  7. Pichon R (Jun 1975). "[Recent acquisitions on the treatment of perinatal infections]". Maroc Med. 55 (591): 280–5. PMID   1177510.
  8. 1 2 Shiba Y, Ono C, Fukui F, Watanabe I, Serizawa N, Gomi K, Yoshikawa H (Jan 2001). "High-level secretory production of phospholipase A1 by Saccharomyces cerevisiae and Aspergillus oryzae". Biosci Biotechnol Biochem. 65 (1): 94–101. doi: 10.1271/bbb.65.94 . PMID   11272851.
  9. Imae R, Inoue T, Kimura M, Kanamori T, Tomioka NH, Kage-Nakadai E, Mitani S, Arai H (Sep 2010). "Intracellular phospholipase A1 and acyltransferase, which are involved in Caenorhabditis elegans stem cell divisions, determine the sn-1 fatty acyl chain of phosphatidylinositol". Mol Biol Cell. 21 (18): 3114–24. doi:10.1091/mbc.E10-03-0195. PMC   2938378 . PMID   20668164.
  10. Mebarek S, Abousalham A, Magne D, Do le D, Bandorowicz-Pikula J, Pikula S, Buchet R (2013). "Phospholipases of Mineralization Competent Cells and Matrix Vesicles: Roles in Physiological and Pathological Mineralizations". International Journal of Molecular Sciences. 14 (3): 5036–129. doi: 10.3390/ijms14035036 . PMC   3634480 . PMID   23455471.
  11. Nishijima M, Akamatsu Y, Nojima S (Sep 1974). "Purification and properties of a membrane-bound phospholipase A1 from Mycobacterium phlei". J Biol Chem. 249 (17): 5658–67. doi: 10.1016/S0021-9258(20)79778-4 . PMID   4415399.
  12. Aoki J, Inoue A, Makide K, Saiki N, Arai H (2007). "Structure and function of extracellular phospholipase A1 belonging to the pancreatic lipase gene family". Biochimie. 89 (2): 197–204. doi:10.1016/j.biochi.2006.09.021. PMID   17101204.
  13. 1 2 Aoki J, Nagai Y, Hosono H, Inoue K, Arai H (May 2002). "Structure and function of phosphatidylserine-specific phospholipase A1". Biochim Biophys Acta. 1582 (1–3): 26–32. doi:10.1016/s1388-1981(02)00134-8. PMID   12069807.