RD-0210

Last updated
RD-0210 (РД-0210)
Mockup rocket motor RD-0210 Salon du Bourget 2013 DSC 0081.jpg
Mockup
Country of origin USSR/Russia
First flight1967-03-10 [1]
Designer OKB-154, Yankel I. Guerchkovitch [1] [2] [3]
Manufacturer Voronezh Mechanical Plant [4]
ApplicationUpper Stage
Associated LV Proton
Predecessor RD-0208 [1]
StatusIn Production
Liquid-fuel engine
Propellant N2O4 [1] / UDMH [1]
Mixture ratio2.6
Cycle Oxidizer Rich Staged combustion [1]
Configuration
Chamber1
Performance
Thrust, vacuum582 kN (131,000 lbf) [1]
Chamber pressure 14.7 MPa (2,130 psi) [1]
Specific impulse, vacuum326.5s [1]
Burn time220s [1]
Dimensions
Length2,327 mm (91.6 in) [1]
Diameter1,470 mm (58 in) [1]
Dry weight566 kg (1,248 lb) [1]
Used in
UR-200 and UR-500 and Proton second stage

The RD-0210 (GRAU Index: 8D411K) is also known as the RD-465. It and its twin, the RD-0211, are rocket engines burning N2O4 and UDMH in an oxidizer rich staged combustion cycle. They have single nozzle, possess TVC and are the latest evolution in the RD-0203/4 lineage. They are the engines used on the Proton second stage. The RD-0213 is a fixed nozzle variation that is used on the RD-0212 module of the Proton third stage.

Contents

Development

When Chelomey's OKB-52 started their UR-200 ICBM project, they requested S. A. Kosberg's OKB-154 to develop the propulsion. They decided to use the same basic block for both the first and second stage. But to achieve the required performance, Kosberg had to develop a staged combustion engine, a then extremely aggressive feat. Only M. V. Melnikov of OKB-1 had designed a staged combustion engine before, the S1.5400, and it used a different propellant mix with significantly less thrust. [3] [5]

To simplify design and manufacture, the engine would be used both on the first and the second stages. The first stage would use a module - the RD-0202 - that comprised three RD-0203 and one RD-0204, while the upper stage would use a RD-0205 module comprising a RD-0206 main engine plus an auxiliary vernier engine, the RD-0207. The RD-0204 only difference to the RD-0203 was that it included a heat exchanger to heat the pressurant gases for the first stage tank. The RD-0206 was very similar to the RD-0204, but its nozzle was vacuum optimized and had a fixed nozzle. The thrust vector control task was delegated to the four nozzle RD-0207 vernier engine. While the UR-200 project was in direct competition to the R-36 and was cancelled in favor of the latter, it did have a few test launches and thus was a proven design. [3] [5] [6]

When Chelomey started his super heavy ICBM UR-500 (8K82) project, he originally intended to use multiple UR-200 modules as a first stage. When this concept proved not viable, and the multi-body that was finally used was settled on, they had to search for new propulsion on the first stage. For the second stage, they adapted the UR-200 first stage's. It needed new tanks to match the first stage, but most of the rest could be adapted. The engines had to be started in the air and had to get longer nozzles, optimized for vacuum operation. Both of this features were demonstrated on the RD-0206, and were readily adapted. They also received a thrust vector gimbaling system, to have better control during launch. Thus, the RD-0208/RD-0209 were born. In a parallel case with the RD-0203/4, the RD-0209 was a version of the RD-0208 that included a heat exchanger. [7] [8]

When the UR-500 proved to be too big as an ICBM, the application of the vehicle as a weapon was cancelled. But it could be adapted as a heavy launch vehicle that could perform important missions for the Soviet moonshot, and so the Proton-K (8K82) was born. This allowed Chelomey to pitch it as a competitor, along the UR-700 project, of Korolev's N-1. For this new missions, it would not need to comply with ICBM specification standards, but would need at least a third stage. The second stage was enlarged, and the RD-0208/9 were revised as the RD-0210 and RD-0211 by uprating them slightly and significantly increasing the burning time. For the third stage, the UR-200 second stage was adapted -again, with the same 4.1m tanking as the first and second stages- and the RD-0205 module with an RD-0206 and an RD-0207 vernier engine was given an overhaul. The new module, - known as RD-0212 - consisted of an RD-0213 and an RD-0214 vernier engine. The RD-0213 was a RD-0206 brought to RD-0211/12 standards, and the RD-0214 was a revised RD-0207. [7] [9] [10]

History

The RD-0203/4 was the second staged combustion engine in the world, only after the S1.5400, and was also the first staged combustion engine with storable propellants. [11]

On 15 September 1968 the RD-0210, RD-0211 and the RD-0212 module launched the Zond 5 around the Moon on a free return trajectory, that sent the first alive organisms around the moon and back to Earth. [11]

On 19 April 1971 a Proton orbited Salyut 1 the first space station to orbit the Earth. [11]

On 19 May 1971 a Proton launched the Mars 2 probe to Mars. The orbiter was identical to the Venera 9 bus, and the lander was the first man made object to reach the surface of Mars. [11]

On 8 June 1975 a Proton launched the Venera 9 to Venus. It consisted of an orbiter based on the Mars 2 design, and a lander which was sent the first pictured from the surface of Venus. [11]

On 20 November 1998 a Proton launched Zarya the first module of the ISS. [11]

On 12 July 2000 a Proton launched Zvezda, the third module launched of the ISS and the center of the Russian portion of the station - the Russian Orbital Segment. [11]

Versions

The basic engine has been used for the UR-200 first and second stages, the UR-500 second stage and the Proton second and third stages. Each variation is as follows:

Modules

Some of these engines were bundled into modules of multiple engines. The relevant modules and auxiliary engines are:

RD-0210 Family of Engines
EngineRD-0203RD-0204RD-0206RD-0208RD-0209RD-0210RD-0211RD-0213
AKA8D448D448D478D4118D4128D411K8D412K8D48
Propulsion ModuleRD-0202RD-0205
(with RD-0207)
RD-0212
(with RD-0214)
Development1961-19641961-19641961-19641962-19661962-19661962-19671962-19671962-1967
Engine Type Liquid oxidizer rich staged combustion using N2O4/UDMH propellant with an O/F ratio of 2.6
Combustion Chamber Pressure14.7 MPa (2,130 psi)
NozzleSingle nozzle
(Fixed)
Single nozzle
Single nozzle
(Fixed)
Single nozzle
with TVC
Single nozzle
with TVC
Single nozzle
with TVC
Single nozzle
with TVC
Single nozzle
(Fixed)
Thrust (Vacuum)559 kN (126,000 lbf)559 kN (126,000 lbf)575.5 kN (129,400 lbf)570 kN (130,000 lbf)570 kN (130,000 lbf)582 kN (131,000 lbf)582 kN (131,000 lbf)582 kN (131,000 lbf)
Thrust (Sea Level)500 kN (110,000 lbf)500 kN (110,000 lbf)
Isp (Vacuum)311s311s326s326s326s326.5s326.5s326.5s
Isp(Sea Level)278s278s
Burn Time136s136s150s150s150s220s220s250s
Length1.8 m (71 in)1.8 m (71 in)2,327 mm (91.6 in)2,327 mm (91.6 in)2,327 mm (91.6 in)2,327 mm (91.6 in)3,008 mm (118.4 in)
Width890 mm (35 in)890 mm (35 in)1,470 mm (58 in)1,470 mm (58 in)1,470 mm (58 in)1,470 mm (58 in)1,470 mm (58 in)1,470 mm (58 in)
Dry Weight381 kilograms (840 lb)381 kilograms (840 lb)540 kilograms (1,190 lb)540 kilograms (1,190 lb)566 kilograms (1,248 lb)566 kilograms (1,248 lb)550 kilograms (1,210 lb)
Use UR-200
First Stage
UR-200
First Stage
UR-200
Second Stage
UR-500
Second Stage
UR-500
Second Stage
Proton
Second Stage
Proton
Second Stage
Proton
Third Stage
First Launch1963-11-061963-11-061963-11-061965-07-161965-07-161967-03-101967-03-101967-03-10
Last Launch1964-10-201964-10-201964-10-201966-07-061966-07-06
StatusRetiredRetiredRetiredRetiredRetiredIn ProductionIn ProductionIn Production
References [1] [3] [7] [12] [13] [14] [23] [24] [25] [26]

See also

Related Research Articles

<span class="mw-page-title-main">RD-58</span>

The RD-58 is a rocket engine, developed in the 1960s by OKB-1, now RKK Energia. The project was managed by Mikhail Melnikov, and it was based on the previous S1.5400 which was the first staged combustion engine in the world. The engine was initially created to power the Block D stage of the Soviet Union's abortive N-1 rocket. Derivatives of this stage are now used as upper stages on some Proton and Zenit rockets. An alternative version of the RD-58 chamber, featuring a shorter nozzle, was used as the N-1's roll-control engine.

<span class="mw-page-title-main">Proton-M</span> Russian heavy lift launcher, hypergolic fuel

The Proton-M, (Протон-М) GRAU index 8K82M or 8K82KM, is an expendable Russian heavy-lift launch vehicle derived from the Soviet-developed Proton. It is built by Khrunichev, and launched from sites 81 and 200 at the Baikonur Cosmodrome in Kazakhstan. Commercial launches are marketed by International Launch Services (ILS), and generally use Site 200/39. The first Proton-M launch occurred on 7 April 2001.

<span class="mw-page-title-main">Chemical Automatics Design Bureau</span> Russian rocket engine manufacturer

Chemical Automatics Design Bureau (CADB), also KB Khimavtomatika, is a Russian design bureau founded by the NKAP in 1941 and led by Semyon Kosberg until his death in 1965. Its origin dates back to a 1940 Moscow carburetor factory, evacuated to Berdsk in 1941, and then relocated to Voronezh city in 1945, where it now operates. Originally designated OKB-296 and tasked to develop fuel equipment for aviation engines, it was redesignated OKB-154 in 1946.

<span class="mw-page-title-main">Proton-K</span> Russian carrier rocket model used from 1967 to 2012

The Proton-K, also designated Proton 8K82K after its GRAU index or SL-12 after its model number, 8K82K, was a Russian, previously Soviet, carrier rocket derived from the earlier Proton. It was built by Khrunichev, and launched from sites 81 and 200 at the Baikonur Cosmodrome in Kazakhstan.

<span class="mw-page-title-main">RD-253</span> Soviet engine design used on the first stage of Proton rockets

The RD-253 ( Russian: Раке́тный дви́гатель 253, Rocket Engine 253) and its later variants, the RD-275and RD-275M, are liquid-propellant rocket engines developed in the Soviet Union by Energomash. The engines are used on the first stage of the Proton launch vehicle and use an oxidizer-rich staged combustion cycle to power the turbopumps. The engine burns UDMH/N2O4, which are highly toxic but hypergolic and storable at room temperature, simplifying the engine's design.

<span class="mw-page-title-main">Kodam I/Bukit Barisan</span> Military unit

Military Regional Command I/Bukit Barisan is an Indonesian Army Regional Military Command that covers the Sumatran provinces of North Sumatra, West Sumatra, Riau and Riau Islands. The command takes its name from the Barisan Mountains.

The RD-0214 (GRAU Index: 8D811) is a rocket vernier engine burning N2O4 and UDMH in a gas generator cycle. It has four nozzles that can each gimbal 45 in plane to provide TVC to the RD-0212 propulsion module of Proton third stage. It is a revised version of the RD-0207.

The RD-0243 is a propulsion module composed of an RD-0244 main engine and a RD-0245 vernier engine. Both are liquid rocket engine, burning N2O4 and UDMH. The RD-0244 main engine operates in the oxidizer rich staged combustion cycle, while the vernier RD-0245 uses the simpler gas generator cycle. Since volume is at a premium on submarine launches, this module is submerged on the propellant tank. Its development period was from 1977 to 1985, having had its first launch on December 27, 1981. Originally developed for the RSM-54, it was used later for the Shtil'.

The RD-0216 and RD-0217 are liquid rocket engines, burning N2O4 and UDMH in the oxidizer rich staged combustion cycle. The only difference between the RD-0216 and the RD-0217 is that the latter has not a heat exchanger to heat the pressuring gasses for the tanks. Three RD-0216 and one RD-0217 were used on the first stage of the UR-100 ICBM. The engines were manufactured until 1974 and stayed in operational use until 1991. More than 1100 engines were produced.

The RD-0233 (GRAU Index 15D95) and RD-0234 (GRAU Index 15D96) are liquid rocket engines, burning N2O4 and UDMH in the oxidizer rich staged combustion cycle. The only difference between the RD-0233 and the RD-0234 is that the latter has a heat exchanger to heat the pressuring gasses for the tanks. Three RD-0233 and one RD-0234 are used on the first stage of the UR-100UTTKh ICBM. While the engine is out of production, the ICBM as well as Rokot and Strela remain operational as of 2015.

The RD-0236 (GRAU Index 15D114) is a liquid rocket vernier engine, burning N2O4 and UDMH in the gas generator cycle. It is used along the RD-0235 main engine on the UTTKh second stage, which was featured in the UR-100N ICBM as well as the Strela and Rokot launch vehicles derived from it. Its function is to supply thrust vector control by gimbaling each of its four nozzles in a plane. While the engine is out of production, the ICBM as well as Strela remain operational as of 2015. The Rokot launch vehicle conducted its final launch before retirement in December 2019.

The RD-0237 (GRAU Index 15D114) is a pressure-fed liquid rocket vernier engine, burning N2O4 and UDMH. It is used on the UR-100UTTKh MIRV vehicle to supply thrust vector control by gimbaling of its nozzle. While the engine is out of production, the ICBM and Strela remain operational as of 2015.

The RD-263 (GRAU Index 15D117) is a liquid rocket engine, burning N2O4 and UDMH in the oxidizer rich staged combustion cycle. Four RD-263 engines form a propulsion module RD-264 (GRAU Index 15D119). For the R-36M KB Yuzhnoye only ordered the first stage propulsion to Energomash, instead of both stages, arguing that they were overworked with the RD-270 development. By April 1970 Yuzhnoye was getting the engine documentation. By the end of 1972 Energomash started to test fire the engines in its own test stand. And by September 1973 the engine was certified for flight. While the engine is out of production, the ICBM as well as the Dnepr remain operational as of 2015.

<span class="mw-page-title-main">YF-20</span> Chinese rocket engine

The YF-20 is a Chinese liquid-fuel rocket engine burning N2O4 and UDMH in a gas generator cycle. It is a basic engine which when mounted in a four engine module forms the YF-21. The high altitude variation is known as the YF-22 is normally paired with the YF-23 vernier to form the YF-24 propulsion module for second stages. New versions when used individually for booster applications are called YF-25.

The YF-23 is a liquid rocket vernier engine, burning N2O4 and UDMH. It is used in along the YF-22 to form the YF-24 and YF-25 propulsion modules.

Voronezh Mechanical Plant is a Russian engine and heavy machinery manufacturing plant. It is located in the city of Voronezh, in the Voronezh Oblast.

<span class="mw-page-title-main">RD-250</span> Rocket engine

The RD-250 (GRAU Index 8D518) is the base version of a dual-nozzle family of liquid rocket engines, burning N2O4 and UDMH in the oxidizer rich staged combustion cycle. The RD-250 was developed by OKB-456 for Yangel's PA Yuzhmash ICBM, the R-36 (8K67). Its variations were also used on the Tsyklon-2 and Tsyklon-3 launch vehicles. It was supposed to be used on the Tsyklon-4, but since the cancellation of the project it should be considered as out of production.

The RD-855 (GRAU Index 8D68M), also known as the RD-68M, is a four-nozzle liquid-fuel rocket vernier engine, burning N2O4 and UDMH in a gas generator cycle. It was used on the R-36, Tsyklon-2 and Tsyklon-3 first stage as thrust vector control by gimbaling of its nozzle. The engine is distributed through a cylindrical structure that is integrated around the main engine RD-251 module. The structure includes aerodynamic protection for the nozzles and small retro engines to assure the separation of the first stage. The engine was ignited two second before the RD-251 main engine.

The RD-0255 is a propulsion module composed of an RD-0256 main engine and a RD-0257 vernier engine. Both are liquid rocket engine, burning UDMH in N2O4. The RD-0256 main engine operates in the oxidizer rich staged combustion cycle, while the vernier RD-0257 uses the simpler gas generator cycle. It was used on the R-36MUTTKh (GRAU:15A18) and R-36M2 (GRAU:15A18M). Subsequently, it has been in the Dnepr second stage and as of 2016 it is still in active service.

The RD-801 is a Ukrainian liquid propellant rocket engine burning LOX and Kerosene (RG-1) in a staged combustion cycle. It has a single combustion chamber that provides thrust vector control by gimbaling of the nozzle in two axis by +/- 6°. It is being designed in Ukraine by Yuzhnoye Design Bureau for the prospective first stage propulsion of the Mayak rocket family.

References

  1. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 "RD0208, RD0209 Launch Vehicle Proton (8K82H-4 two stages). RD0210, RD0211, RD0212 (RD0213, RD0214) Launch Vehicle Proton (8K82K, 8K82KM three stages)". KBKhA. Archived from the original on 15 August 2015.
  2. Pillet, Nicolas. "Le troisième étage du lanceur Proton" (in French). Kosmonavtika.com. Retrieved 2015-06-08.
  3. 1 2 3 4 Zak, Anatoly. "RD-0212 engine". www.russianspaceweb.com. Retrieved 2015-06-08.
  4. "Liquid Rocket Engine". Voronezh Mechanical Plant. Archived from the original on 30 May 2015.
  5. 1 2 Zak, Anatoly. "UR-200 / 8K81 / SS-X-10". www.russianspaceweb.com. Retrieved 2015-06-08.
  6. 1 2 "UR-200". Encyclopedia Astronautica. Archived from the original on May 2, 2002. Retrieved 2015-06-08.
  7. 1 2 3 Zak, Anatoly. "Birth of Proton: The Iconic Rocket That Almost Wasn't". www.russianspaceweb.com. Retrieved 2015-06-08.
  8. Zak, Anatoly. "Proton/UR-500/8k82/SL-9". www.russianspaceweb.com. Retrieved 2015-06-08.
  9. Zak, Anatoly. "Proton's second stage". www.russianspaceweb.com. Retrieved 2015-06-08.
  10. Zak, Anatoly. "Proton's third stage". www.russianspaceweb.com. Retrieved 2015-06-08.
  11. 1 2 3 4 5 6 7 "KBKHA LIQUID ROCKET ENGINES, WHICH ENSURED THE SUCCESSFUL REALIZATION OF THE ADVANCED SPACE PROGRAMS (FOR THE FIRST TIME IN THE WORLD)". KBKhA. Archived from the original on 24 March 2016.
  12. 1 2 "RD-0203". Encyclopedia Astronautica. Archived from the original on June 25, 2002. Retrieved 2015-06-08.
  13. 1 2 "RD-0204". Encyclopedia Astronautica. Archived from the original on January 13, 2003. Retrieved 2015-06-08.
  14. 1 2 "RD-0206". Encyclopedia Astronautica. Archived from the original on June 25, 2002. Retrieved 2015-06-08.
  15. "RD-0208". Encyclopedia Astronautica. Archived from the original on June 25, 2002. Retrieved 2015-06-08.
  16. "RD-0209". Encyclopedia Astronautica. Archived from the original on May 5, 2002. Retrieved 2015-06-08.
  17. "RD-0210". Encyclopedia Astronautica. Archived from the original on 2017-11-11. Retrieved 2015-06-08.
  18. "RD-0211". Encyclopedia Astronautica. Archived from the original on May 25, 2002. Retrieved 2015-06-08.
  19. "RD-0213". Encyclopedia Astronautica. Archived from the original on August 26, 2002. Retrieved 2015-06-08.
  20. "RD-0202". Encyclopedia Astronautica. Archived from the original on August 26, 2002. Retrieved 2015-06-08.
  21. "RD-0205". Encyclopedia Astronautica. Archived from the original on August 26, 2002. Retrieved 2015-06-08.
  22. "RD-0212". Encyclopedia Astronautica. Archived from the original on June 2, 2002. Retrieved 2015-06-08.
  23. "RD-0203, RD-0204, RD-0205, RD-0206, RD-0207. Intercontinental ballistic missile UR-200". KBKhA. Archived from the original on 5 May 2014.
  24. "RD-0210/0211 (8D411 K/8D412K) Liquid-propellant rocket engine". Khrunichev State Research and Production Space Center. Archived from the original on 15 June 2015.
  25. "RD-0212 (8D49) Liquid-propellant rocket engine". Khrunichev State Research and Production Space Center. Archived from the original on 27 May 2011.
  26. Pillet, Nicolas. "Le deuxième étage du lanceur Proton" (in French). Kosmonavtika.com. Retrieved 2015-06-08.