Mars 2

Last updated

45°S47°E / 45°S 47°E / -45; 47 (Mars 2 Lander impact)
Mars 2
Mars3 iki.jpg
Mars 3 Orbiter (nearly identical to Mars 2) with lander visible at top
NamesM-71 No. 171
Mission typeOrbiter and lander
Operator Soviet Union
COSPAR ID Orbiter: 1971-045A
Lander: 1971-045D
SATCAT no. Orbiter: 5234
Lander: 5739
Mission duration461 days
Spacecraft properties
Manufacturer OKB-1
Launch massCombined: 4,650 kg (10,250 lb)
Orbiter: 3,440 kg (7,580 lb)
Lander: 1,210 kg (2,670 lb) [1]
Start of mission
Launch date16:22:44,May 19, 1971(UTC) (1971-05-19T16:22:44Z)
Rocket Proton K with Blok D upper stage
End of mission
DisposalDecommissioned
DeactivatedAugust 22, 1972 (1972-08-22)
Last contactlast data transmission July 1972 [2]
Orbital parameters
Reference system Areocentric
Mars orbiter
Orbital insertion27 November 1971
Orbits362
Orbital parameters
Periareion altitude 1,380 km (860 mi)
Apoareion altitude 24,940 km (15,500 mi)
Inclination48.9°
 

The Mars 2 was an uncrewed space probe of the Mars program, a series of uncrewed Mars landers and orbiters launched by the Soviet Union beginning 19 May 1971. The Mars 2 and Mars 3 missions consisted of identical spacecraft, each with an orbiter and an attached lander. The orbiter is identical to the Venera 9 bus. The type of bus/orbiter is the 4MV. They were launched by a Proton-K heavy launch vehicle with a Blok D upper stage. The lander of Mars 2 became the first human-made object to reach the surface of Mars, although the landing system failed and the lander was lost.

Contents

Overview

Launch

On 19 May 1971, the Proton-K heavy launch vehicle launched the probe from Baikonur Cosmodrome. After the first stage separated the second stage was ignited. The third stage engine blasted Mars 2 into parking orbit, then the Blok D upper stage sent Mars 2 on the trans-Mars trajectory.

Orbiter

The Orbiter type was the 4MV, used also for Mars-3 and later Mars and Venera Probes. The orbiter engine performed a burn to put the spacecraft into a 1,380-by-2,494-kilometre (857 mi × 1,550 mi), 18-hour orbit about Mars with an inclination of 48.9 degrees. Scientific instruments were generally turned on for about 30 minutes near periapsis.

The orbiter's primary scientific objectives were to image the Martian surface and clouds, determine the temperature on Mars, study the topography, composition and physical properties of the surface, measure properties of the atmosphere, monitor the solar wind and the interplanetary and Martian magnetic fields, and act as a communications relay to send signals from the landers to the Earth.

By coincidence, a particularly large dust storm on Mars adversely affected the mission. When Mariner 9 arrived and successfully orbited Mars on 14 November 1971, just two weeks prior to Mars 2 and Mars 3, planetary scientists were surprised to find the atmosphere was thick with "a planet-wide robe of dust, the largest storm ever observed." The surface was totally obscured. Unable to reprogram the mission computers, both Mars 2 and Mars 3 dispatched their landers immediately, and the orbiters used up a significant portion of their available data resources in snapping images of the featureless dust clouds below, rather than the surface mapping intended. [3]

The Mars 2 orbiter sent back data covering the period from December 1971 to March 1972, although transmissions continued through August. It was announced that Mars 2 and Mars 3 had completed their missions by 22 August 1972, after 362 orbits. The probe, combined with Mars 3, sent back a total of 60 pictures. The images and data revealed mountains as high as 22 kilometres (14 mi), atomic hydrogen and oxygen in the upper atmosphere, surface temperatures ranging from −110 to 13 °C (−166 to 55 °F), surface pressures of 5.5 to 6 mbar (0.55 to 0.6 kPa), water vapor concentrations 5,000 times less than in the Earth's atmosphere, the base of the ionosphere starting at 80 to 110 kilometres (50 to 68 mi) altitude, and grains from dust storms as high as 7 kilometres (4.3 mi) in the atmosphere. The images and data enabled the creation of surface relief maps, [4] and gave information on Martian gravity and magnetic fields. The orbiter remains in Martian orbit.

Lander

Map of Mars, showing the location of Mars 2 center left, in relation to Viking 1, Mars Pathfinder and Opportunity Mars map Viking 1 Mars 2 Mars Pathfinder Opportunity.png
Map of Mars, showing the location of Mars 2 center left, in relation to Viking 1 , Mars Pathfinder and Opportunity

Lander spacecraft system

Mars 3 Lander model at the Memorial Museum of Cosmonautics in Moscow FP2A3620 (23497688248) (cropped).jpg
Mars 3 Lander model at the Memorial Museum of Cosmonautics in Moscow

The Mars 2 descent module was mounted on the bus/orbiter opposite the propulsion system. It consisted of a spherical 1.2 metres (3 ft 11 in) diameter landing capsule, a 2.9 metres (9 ft 6 in) diameter conical aerodynamic braking shield, a parachute system and retro-rockets.

The entire descent module had a fueled mass of 1,210 kilograms (2,670 lb), the spherical landing capsule accounting for 358 kilograms (789 lb) of this. An automatic control system consisting of gas micro-engines and pressurised nitrogen containers provided attitude control. Four "gunpowder" engines were mounted to the outer edge of the cone to control pitch and yaw.

The main and auxiliary parachutes, the engine to initiate the landing, and the radar altimeter were mounted on the top section of the lander. Foam was used to absorb shock within the descent module. The landing capsule had four triangular petals which would open after landing, righting the spacecraft and exposing the instrumentation.

The lander was equipped with two television cameras with a 360 degree view of the surface as well as a mass spectrometer to study atmospheric composition; temperature, pressure, and wind sensors; and devices to measure mechanical and chemical properties of the surface, including a mechanical scoop to search for organic materials and signs of life. It also contained a pennant with the State Emblem of the Soviet Union.

Four aerials protruded from the top of the sphere to provide communications with the orbiter via an onboard radio system. The equipment was powered by batteries which were charged by the orbiter prior to separation. Temperature control was maintained through thermal insulation and a system of radiators. The landing capsule was sterilised before launch to prevent contamination of the Martian environment.

PrOP-M rover

Rendering of the PrOP-M PrOP-M.jpg
Rendering of the PrOP-M

Mars 2 lander had a small 4.5 kilograms (9.9 lb) Mars rover on board, which would move across the surface on skis while connected to the lander with a 15-metre (49 ft) umbilical. Two small metal rods were used for autonomous obstacle avoidance, as radio signals from Earth would take too long to drive the rovers using remote control. The rover carried a dynamic penetrometer and a radiation densitometer. [4]

The main PrOP-M frame was a square box with a small protrusion at the center. The frame was supported on two wide flat skis, one extending down from each side elevating the frame slightly above the surface.

The rover was planned to be placed on the surface after landing by a manipulator arm and to move in the field of view of the television cameras and stop to make measurements every 1.5 metres (4 ft 11 in). The traces of movement in the Martian soil would also be recorded to determine material properties.

Because of the demise of the lander, the rover was not deployed.

Entry, descent, and crash landing

The descent module separated from the orbiter on 27 November 1971 about 4.5 hours before reaching Mars. After entering the atmosphere at approximately 6 km/s, the descent system on the module malfunctioned, possibly because the angle of entry was too steep. The descent sequence did not operate as planned and the parachute did not deploy. [4] The descent module became the first man-made object to impact the surface of Mars. The exact crash site is unknown, but it is estimated to be at 45°S313°W / 45°S 313°W / -45; -313 . [3] [5] Attempts to contact the probe after the crash were unsuccessful.

Interactive image map of the global topography of Mars, overlaid with the position of Martian rovers and landers. Coloring of the base map indicates relative elevations of Martian surface.
Clickable image: Clicking on the labels will open a new article.
Legend:
.mw-parser-output .legend{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .legend-color{display:inline-block;min-width:1.25em;height:1.25em;line-height:1.25;margin:1px 0;text-align:center;border:1px solid black;background-color:transparent;color:black}.mw-parser-output .legend-text{}
Active (white lined, *) *
Inactive *
Planned (dash lined, ***)
(view * discuss) Mars Map.JPG
Interactive image map of the global topography of Mars, overlaid with the position of Martian rovers and landers. Coloring of the base map indicates relative elevations of Martian surface.
Mano cursor.svg Clickable image:Clicking on the labels will open a new article.
Legend:   Active (white lined, ※)  Inactive  Planned (dash lined, ⁂)
PhoenixIcon.png Beagle 2
CuriosityIcon.png
Curiosity
PhoenixIcon.png
Deep Space 2
RoverIcon.png Rosalind Franklin
PhoenixIcon.png InSight
Mars3landericon.jpg Mars 2
Mars3landericon.jpg Mars 3
Mars3landericon.jpg Mars 6
PhoenixIcon.png
Mars Polar Lander ↓
RoverIcon.png Opportunity
CuriosityIcon.png
Perseverance
PhoenixIcon.png Phoenix
EDMIcon.png
Schiaparelli EDM
SojournerIcon.png Sojourner
RoverIcon.png
Spirit
ZhurongIcon.jpg Zhurong
VikingIcon.png
Viking 1
VikingIcon.png Viking 2

See also

Related Research Articles

<span class="mw-page-title-main">Viking program</span> Pair of NASA landers and orbiters sent to Mars in 1976

The Viking program consisted of a pair of identical American space probes, Viking 1 and Viking 2, which landed on Mars in 1976. The mission effort began in 1968 and was managed by the NASA Langley Research Center. Each spacecraft was composed of two main parts: an orbiter designed to photograph the surface of Mars from orbit, and a lander designed to study the planet from the surface. The orbiters also served as communication relays for the landers once they touched down.

The Mars program was a series of uncrewed spacecraft launched by the Soviet Union between 1960 and 1973. The spacecraft were intended to explore Mars, and included flyby probes, landers and orbiters.

<span class="mw-page-title-main">Mars 3</span> Soviet space probe launched in 1971, consisting of a Mars orbiter and lander

Mars 3 was a robotic space probe of the Soviet Mars program, launched May 28, 1971, nine days after its twin spacecraft Mars 2. The probes were identical robotic spacecraft launched by Proton-K rockets with a Blok D upper stage, each consisting of an orbiter and an attached lander. After the Mars 2 lander crashed on the Martian surface, the Mars 3 lander became the first spacecraft to attain a soft landing on Mars, on December 2, 1971. It failed 110 seconds after landing, having transmitted only a gray image with no details. The Mars 2 orbiter and Mars 3 orbiter continued to circle Mars and transmit images back to Earth for another eight months.

<i>Mars Pathfinder</i> Mission including first robotic rover to operate on Mars (1997)

Mars Pathfinder is an American robotic spacecraft that landed a base station with a roving probe on Mars in 1997. It consisted of a lander, renamed the Carl Sagan Memorial Station, and a lightweight, 10.6 kg (23 lb) wheeled robotic Mars rover named Sojourner, the first rover to operate outside the Earth–Moon system.

<span class="mw-page-title-main">Lander (spacecraft)</span> Type of spacecraft

A lander is a spacecraft that descends towards, then comes to rest on the surface of an astronomical body other than Earth. In contrast to an impact probe, which makes a hard landing that damages or destroys the probe upon reaching the surface, a lander makes a soft landing after which the probe remains functional.

<span class="mw-page-title-main">Mars Polar Lander</span> Failed 1999 robotic Mars lander

The Mars Polar Lander, also known as the Mars Surveyor '98 Lander, was a 290-kilogram robotic spacecraft lander launched by NASA on January 3, 1999, to study the soil and climate of Planum Australe, a region near the south pole on Mars. It formed part of the Mars Surveyor '98 mission. On December 3, 1999, however, after the descent phase was expected to be complete, the lander failed to reestablish communication with Earth. A post-mortem analysis determined the most likely cause of the mishap was premature termination of the engine firing prior to the lander touching the surface, causing it to strike the planet at a high velocity.

<span class="mw-page-title-main">Exploration of Mars</span> Overview of the exploration of Mars

The planet Mars has been explored remotely by spacecraft. Probes sent from Earth, beginning in the late 20th century, have yielded a large increase in knowledge about the Martian system, focused primarily on understanding its geology and habitability potential. Engineering interplanetary journeys is complicated and the exploration of Mars has experienced a high failure rate, especially the early attempts. Roughly sixty percent of all spacecraft destined for Mars failed before completing their missions and some failed before their observations could begin. Some missions have been met with unexpected success, such as the twin Mars Exploration Rovers, Spirit and Opportunity, which operated for years beyond their specification.

<span class="mw-page-title-main">Mars Science Laboratory</span> Robotic mission that deployed the Curiosity rover to Mars in 2012

Mars Science Laboratory (MSL) is a robotic space probe mission to Mars launched by NASA on November 26, 2011, which successfully landed Curiosity, a Mars rover, in Gale Crater on August 6, 2012. The overall objectives include investigating Mars' habitability, studying its climate and geology, and collecting data for a human mission to Mars. The rover carries a variety of scientific instruments designed by an international team.

<i>Phoenix</i> (spacecraft) NASA Mars lander

Phoenix was an uncrewed space probe that landed on the surface of Mars on May 25, 2008, and operated until November 2, 2008. Phoenix was operational on Mars for 157 sols. Its instruments were used to assess the local habitability and to research the history of water on Mars. The mission was part of the Mars Scout Program; its total cost was $420 million, including the cost of launch.

<span class="mw-page-title-main">ExoMars</span> Astrobiology programme

ExoMars is an astrobiology programme of the European Space Agency (ESA) and the Russian space agency (Roscosmos).

<span class="mw-page-title-main">Moon landing</span> Arrival of a spacecraft on the Moons surface

A Moon landing or lunar landing is the arrival of a spacecraft on the surface of the Moon. This includes both crewed and robotic missions. The first human-made object to touch the Moon was the Soviet Union's Luna 2, on 13 September 1959.

<span class="mw-page-title-main">Lunar lander</span> Spacecraft intended to land on the surface of the Moon

A lunar lander or Moon lander is a spacecraft designed to land on the surface of the Moon. As of 2023, the Apollo Lunar Module is the only lunar lander to have ever been used in human spaceflight, completing six lunar landings from 1969 to 1972 during the United States' Apollo Program. Several robotic landers have reached the surface, and some have returned samples to Earth.

<span class="mw-page-title-main">Mars landing</span> Landing of a spacecraft on the surface of Mars

A Mars landing is a landing of a spacecraft on the surface of Mars. Of multiple attempted Mars landings by robotic, uncrewed spacecraft, ten have had successful soft landings. There have also been studies for a possible human mission to Mars including a landing, but none have been attempted. Soviet Union’s Mars 3, which landed in 1971, was the first successful Mars landing. As of 2023, the Soviet Union, United States and China have conducted Mars landings successfully.

<span class="mw-page-title-main">Trace Gas Orbiter</span> Mars orbiter, part of ExoMars programme

The ExoMars Trace Gas Orbiter is a collaborative project between the European Space Agency (ESA) and the Russian Roscosmos agency that sent an atmospheric research orbiter and the Schiaparelli demonstration lander to Mars in 2016 as part of the European-led ExoMars programme.

SpaceX <i>Red Dragon</i> Modified SpaceX Dragon spacecraft design for a proposed sample return mission to Mars

The SpaceX Red Dragon was a 2011–2017 concept for using an uncrewed modified SpaceX Dragon 2 for low-cost Mars lander missions to be launched using Falcon Heavy rockets.

<i>Schiaparelli</i> EDM Mars landing demonstration system

Schiaparelli EDM was a failed Entry, Descent, and Landing Demonstrator Module (EDM) of the ExoMars programme—a joint mission of the European Space Agency (ESA) and the Russian Space Agency Roscosmos. It was built in Italy and was intended to test technology for future soft landings on the surface of Mars. It also had a limited but focused science payload that would have measured atmospheric electricity on Mars and local meteorological conditions.

<span class="mw-page-title-main">Tianwen-1</span> Interplanetary mission by China to place an orbiter, lander, and rover on Mars

Tianwen-1 Chinese: 天问一号 is an interplanetary mission by the China National Space Administration (CNSA) which sent a robotic spacecraft to Mars, consisting of 6 spacecraft: an orbiter, two deployable cameras, lander, remote camera, and the Zhurong rover. The spacecraft, with a total mass of nearly five tons, is one of the heaviest probes launched to Mars and carries 14 scientific instruments. It is the first in a series of planned missions undertaken by CNSA as part of its Planetary Exploration of China program.

<span class="mw-page-title-main">Martian Moons eXploration</span> Planned sample-return mission by Japan to Phobos

Martian Moons eXploration (MMX) is a robotic space probe set for launch in 2026 to bring back the first samples from Mars' largest moon Phobos. Developed by the Japan Aerospace Exploration Agency (JAXA) and announced on 9 June 2015, MMX will land and collect samples from Phobos once or twice, along with conducting Deimos flyby observations and monitoring Mars's climate.

References

  1. "NASA - NSSDCA - Spacecraft - Details".
  2. See Mars 3 article in https://solarsystem.nasa.gov/resources/1060/beyond-earth-a-chronicle-of-deep-space-exploration/
  3. 1 2 Pyle, Rod (2012). Destination Mars. Prometheus Books. pp. 73–78. ISBN   978-1-61614-589-7. ...Mars 2 and Mars 3. Both reached Mars shortly after Mariner 9. Unfortunately, these Soviet ships were not reprogrammable, as was the case with Mariner 9, and rather than wait out the huge, planet-wide dust storm, they proceeded to follow their programming right on schedule. Landers were dispatched from each, the first crashing and the second apparently reaching the surface intact but losing radio contact immediately. The orbiters fared little better; following their simple logic, both used up their available resources snapping images of the featureless dust clouds below.
  4. 1 2 3 Perminov, V.G. (July 1999). The Difficult Road to Mars - A Brief History of Mars Exploration in the Soviet Union. NASA Headquarters History Division. pp.  34–60. ISBN   0-16-058859-6.
  5. "Missions to Mars". The Planetary Society.