Astrobiology Field Laboratory

Last updated

Astrobiology Field Laboratory
Astrobiology-Field-Lab.jpg
Astrobiology Field Laboratory
Mission typeAstrobiology rover
Operator NASA
Website at jpl.nasa.gov (recovered from archive)
Mission duration1 Martian year (proposed)
Spacecraft properties
Launch mass450 kg (990 lb) maximum
Start of mission
Launch date2016 (proposed)
 

The Astrobiology Field Laboratory (AFL) (also Mars Astrobiology Field Laboratory or MAFL) was a proposed NASA rover that would have conducted a search for life on Mars. [1] [2] This proposed mission, which was not funded, would have landed a rover on Mars in 2016 and explore a site for habitat. Examples of such sites are an active or extinct hydrothermal deposit, a dry lake or a specific polar site. [3]

Contents

Had it been funded, the rover was to be built by NASA's Jet Propulsion Laboratory, based upon the Mars Science Laboratory rover design, it would have carried astrobiology-oriented instruments, and ideally, a core drill. The original plans called for a launch in 2016, [4] however, budgetary constraints caused funding cuts. [5] [6]

Mission

The rover could have been the first mission since the Viking program landers of the 1970s to specifically look for the chemistry associated with life (biosignatures), such as carbon-based compounds along with molecules involving both sulfur and nitrogen. The mission strategy was to search for habitable zones by "following the water" and "finding the carbon." [1] In particular, it was to conduct detailed analysis of geologic environments identified by the 2012 Mars Science Laboratory as being conducive to life on Mars and biosignatures, past and present. Such environments might include fine-grained sedimentary layers, hot spring mineral deposits, icy layers near the poles, or sites such as gullies where liquid water once flowed or may continue to seep into soils from melting ice packs.

Planning

The Astrobiology Field Laboratory (AFL) would have followed the Mars Reconnaissance Orbiter (launched in 2005), Phoenix lander (launched in 2007), and Mars Science Laboratory (launched in 2011). The AFL 'Science Steering Group' developed the following set of search strategies and assumptions for increasing the likelihood of detecting biosignatures: [1]

  1. Life processes may produce a range of biosignatures such as lipids, proteins, amino acids, kerogen-like material or characteristic micropores in rock. [7] However, the biosignatures themselves may become progressively destroyed by ongoing environmental processes.
  2. Sample acquisition will need to be executed in multiple locations and at depths below that point on the Martian surface where oxidation results in chemical alteration. The surface is oxidizing as a consequence of the absence of magnetic field or magnetosphere shielding from harmful space radiation and solar electromagnetic radiation [8] [9] —which may well render the surface sterile down to a depth greater than 7.5 meters (24.6 ft). [10] [11] To get under that potential sterile layer, a core drill design is currently being studied. As with any trade, the inclusion of the drill would come at the mass expense available for other payload elements.
  3. Analytical laboratory biosignature measurements require the pre-selection and identification of high-priority samples, which could be subsequently subsampled to maximize detection probability and spatially resolve potential biosignatures for detailed analysis.

Payload

The conceptual payload included a Precision Sample Handling and Processing System to replace and augment the functionality and capabilities provided by the Sample Acquisition Sample Processing and Handling system that was part of the 2009-configuration of Mars Science Laboratory rover [1] [12] (the system is known as SAM (Sample Analysis at Mars) in 2011-configuration of Mars Science Laboratory). The AFL payload was to attempt to minimize any conflicting positive detection of life by including a suite of instruments that provide at least three mutually confirming analytical laboratory measurements. [3]

For the purpose of discerning a reasonable estimate on which to base the rover mass, the conceptual payload was to include: [1]

Power source

It was suggested that the Astrobiology Field Laboratory use radioisotope thermoelectric generators (RTGs) as its power source, like the ones to be used on the Mars Science Laboratory. [1] The radioactive RTG power source was to last for about one Martian year, or approximately two Earth years. RTGs can provide reliable, continuous power day and night, and waste heat can be used via pipes to warm systems, freeing electrical power for the operation of the vehicle and instruments.

Science

Though the AFL science justification did not include a pre-definition of potential life forms that might be found on Mars, the following assumptions were made: [1]

  1. Life utilizes some form of carbon.
  2. Life requires an external energy source (sunlight or chemical energy) to survive.
  3. Life is packaged in cellular-type compartments (cells).
  4. Life requires liquid water.

Within the region of surface operations, identify and classify Martian environments (past or present) with different habitability potential, and characterize their geologic context. Quantitatively assess habitability potential by: [1]

It is fundamental to the AFL concept to understand that organisms and their environment constitute a system, within which any one part can affect the other. If life exists or has existed on Mars, scientific measurements to be considered would focus on understanding those systems that support or supported it. If life never existed while conditions were suitable for life formation, understanding why a Martian genesis never occurred would be a future priority. [1] The AFL team stated that it is reasonable to expect that missions like AFL will play a significant role in this process, but unreasonable to expect that they will bring it to a conclusion. [3]

See also

Related Research Articles

<span class="mw-page-title-main">Astrobiology</span> Science concerned with life in the universe

Astrobiology is a scientific field within the life and environmental sciences that studies the origins, early evolution, distribution, and future of life in the universe by investigating its deterministic conditions and contingent events. As a discipline, astrobiology is founded on the premise that life may exist beyond Earth.

<span class="mw-page-title-main">Life on Mars</span> Scientific assessments on the microbial habitability of Mars

The possibility of life on Mars is a subject of interest in astrobiology due to the planet's proximity and similarities to Earth. To date, no proof of past or present life has been found on Mars. Cumulative evidence suggests that during the ancient Noachian time period, the surface environment of Mars had liquid water and may have been habitable for microorganisms, but habitable conditions do not necessarily indicate life.

A biosignature is any substance – such as an element, isotope, molecule, or phenomenon that provides scientific evidence of past or present life. Measurable attributes of life include its complex physical or chemical structures and its use of free energy and the production of biomass and wastes. A biosignature can provide evidence for living organisms outside the Earth and can be directly or indirectly detected by searching for their unique byproducts.

<span class="mw-page-title-main">Viking lander biological experiments</span> Mars life detection experiments

In 1976 two identical Viking program landers each carried four types of biological experiments to the surface of Mars. The first successful Mars landers, Viking 1 and Viking 2, then carried out experiments to look for biosignatures of microbial life on Mars. The landers each used a robotic arm to pick up and place soil samples into sealed test containers on the craft.

<span class="mw-page-title-main">ExoMars</span> Astrobiology programme

ExoMars is an astrobiology programme of the European Space Agency (ESA) and the Russian space agency (Roscosmos).

<span class="mw-page-title-main">Mars Astrobiology Explorer-Cacher</span> Cancelled NASA Mars rover concept

The Mars Astrobiology Explorer-Cacher (MAX-C), also known as Mars 2018 mission, was a NASA concept for a Mars rover mission, proposed to be launched in 2018 together with the European ExoMars rover. The MAX-C rover concept was cancelled in April 2011 due to budget cuts.

<span class="mw-page-title-main">Astrobiology Science and Technology for Exploring Planets</span> Former NASA program

Astrobiology Science and Technology for Exploring Planets (ASTEP) was a program established by NASA to sponsor research projects that advance the technology and techniques used in planetary exploration. The objective was to enable the study of astrobiology and to aid the planning of extraterrestrial exploration missions while prioritizing science, technology, and field campaigns.

Interplanetary contamination refers to biological contamination of a planetary body by a space probe or spacecraft, either deliberate or unintentional.

Rosalind Franklin, previously known as the ExoMars rover, is a planned robotic Mars rover, part of the international ExoMars programme led by the European Space Agency and the Russian Roscosmos State Corporation. The mission was scheduled to launch in July 2020, but was postponed to 2022. The 2022 Russian invasion of Ukraine has caused an indefinite delay of the programme, as the member states of the ESA voted to suspend the joint mission with Russia; in July 2022, ESA terminated its cooperation on the project with Russia. As of May 2022, the launch of the rover is not expected to occur before 2028 due to the need for a new non-Russian landing platform.

The Biological Oxidant and Life Detection (BOLD) is a concept mission to Mars focused on searching for evidence or biosignatures of microscopic life on Mars. The BOLD mission objective would be to quantify the amount of hydrogen peroxide existing in the Martian soil and to test for processes typically associated with life. Six landing packages are projected to impact 'softly' on Mars that include a limited power supply, a set of oxidant and life detection experiments, and a transmitter, which is able to transmit information via an existing Mars orbiter back to Earth. The mission was first proposed in 2012.

<i>Curiosity</i> (rover) NASA robotic rover exploring Gale crater on Mars

Curiosity is a car-sized Mars rover exploring Gale crater and Mount Sharp on Mars as part of NASA's Mars Science Laboratory (MSL) mission. Curiosity was launched from Cape Canaveral (CCAFS) on November 26, 2011, at 15:02:00 UTC and landed on Aeolis Palus inside Gale crater on Mars on August 6, 2012, 05:17:57 UTC. The Bradbury Landing site was less than 2.4 km (1.5 mi) from the center of the rover's touchdown target after a 560 million km (350 million mi) journey.

MELOS is a Japanese rover mission concept under study for an engineering demonstration of precision landing, and to look for possible biosignatures on Mars using a rover. JAXA has not published updates since 2015.

<span class="mw-page-title-main">Icebreaker Life</span>

Icebreaker Life is a Mars lander mission concept proposed to NASA's Discovery Program. The mission involves a stationary lander that would be a near copy of the successful 2008 Phoenix and InSight spacecraft, but would carry an astrobiology scientific payload, including a drill to sample ice-cemented ground in the northern plains to conduct a search for biosignatures of current or past life on Mars.

ExoLance is a low-cost mission concept that could hitch a ride on other missions to Mars in an effort to look for evidence of subsurface life.

<span class="mw-page-title-main">Planetary Instrument for X-Ray Lithochemistry</span> X-ray fluorescence spectrometer to determine the elemental composition of Martian soil

Planetary Instrument for X-Ray Lithochemistry (PIXL) is an X-ray fluorescence spectrometer to determine the fine scale elemental composition of Martian surface materials designed for the Perseverance rover as part of the Mars 2020 mission.

<span class="mw-page-title-main">Scanning Habitable Environments with Raman and Luminescence for Organics and Chemicals</span> Raman spectrometer using an UV laser to determine fine-scale mineralogy and detect organic compounds

Scanning Habitable Environments with Raman and Luminescence for Organics and Chemicals (SHERLOC) is an ultraviolet Raman spectrometer that uses fine-scale imaging and an ultraviolet (UV) laser to determine fine-scale mineralogy, and detect organic compounds designed for the Perseverance rover as part of the Mars 2020 mission. It was constructed at the Jet Propulsion Laboratory with major subsystems being delivered from Malin Space Science Systems and Los Alamos National Laboratory. The Principal Investigator is Luther Beegle, and the Deputy Principal Investigator is Rohit Bhartia.

The Mars Organic Molecule Analyser (MOMA) is a mass spectrometer-based instrument on board the Rosalind Franklin rover to be launched in 2028 to Mars on an astrobiology mission. It will search for organic compounds in the collected soil samples. By characterizing the molecular structures of detected organics, MOMA can provide insights into potential molecular biosignatures. MOMA will be able to detect organic molecules at concentrations as low as 10 parts-per-billion by weight (ppbw). MOMA examines solid crushed samples exclusively; it does not perform atmospheric analyses.

ADRON-RM is a neutron spectrometer to search for subsurface water ice and hydrated minerals. This analyser is part of the science payload on board the European Space Agency'sRosalind Franklin rover, tasked to search for biosignatures and biomarkers on Mars. The rover is planned to be launched in August–October 2022 and land on Mars in spring 2023.

Signs Of LIfe Detector (SOLID) is an analytical instrument under development to detect extraterrestrial life in the form of organic biosignatures obtained from a core drill during planetary exploration.

Andrew Steele is an astrobiologist at the Geophysical Laboratory at Carnegie Institution for Science. He uses traditional and biotechnological approaches for the detection of microbial life in the field of astrobiology and Solar System exploration. His research has led to discoveries of new forms of carbon in meteorites, new mechanisms of organic synthesis on Earth and Mars, and the presence of water in lunar and Martian rocks. Steele has developed several instrument and mission concepts for future Mars missions and was involved in NASA’s 2011 Mars Science Laboratory mission, as a member of the Sample Analysis at Mars team. He also tested instruments on board the Arctic Mars Analogue Svalbard Expedition in the Arctic.

References

  1. 1 2 3 4 5 6 7 8 9 Beegle, Luther W.; et al. (August 2007). "A Concept for NASA's Mars 2016 Astrobiology Field Laboratory". Astrobiology. 7 (4): 545–577. Bibcode:2007AsBio...7..545B. doi:10.1089/ast.2007.0153. PMID   17723090.
  2. "Missions to Mars". Jet Propulsion Laboratory. NASA. February 18, 2009. Archived from the original on July 16, 2009. Retrieved July 20, 2009.
  3. 1 2 3 4 Steele, A., Beaty; et al. (September 26, 2006). "Final report of the MEPAG Astrobiology Field Laboratory Science Steering Group (AFL-SSG)" (.doc). In David Beaty (ed.). The Astrobiology Field Laboratory. U.S.A.: the Mars Exploration Program Analysis Group (MEPAG) - NASA. p. 72. Retrieved July 22, 2009.
  4. "Mars Astrobiology Field Laboratory and the Search for Signs of Life". Mars Today. September 1, 2007. Archived from the original on December 16, 2012. Retrieved July 20, 2009.
  5. Leonard, Tom (July 6, 2009). "NASA experts scale back moon and Mars plans in face of Obama funding cut fears". Daily Telegraph. Retrieved January 9, 2023.
  6. "Set sights on Mars, moon pioneers urge". Mars Daily. July 20, 2009. Retrieved January 9, 2023.
  7. Tanja Bosak; Virginia Souza-Egipsy; Frank A. Corsetti; Dianne K. Newman (May 18, 2004). "Micrometer-scale porosity as a biosignature in carbonate crusts". Geology. 32 (9): 781–784. Bibcode:2004Geo....32..781B. doi:10.1130/G20681.1.
  8. NASA Mars Global Surveyor
  9. Arkani-Hamed, Jafar; Boutin, Daniel (July 20–25, 2003). "Polar Wander of Mars: Evidence from Magnetic Anomalies" (PDF). Sixth International Conference on Mars. Pasadena, California: Dordrecht, D. Reidel Publishing Co. Retrieved March 2, 2007.
  10. Dartnell, L.R. et al., "Modelling the surface and subsurface Martian radiation environment: Implications for astrobiology," Geophysical Research Letters 34, L02207, doi:10,1029/2006GL027494, 2007.
  11. "Mars Rovers Sharpen Questions About Livable Conditions". Jet Propulsion Laboratory. NASA. February 15, 2008. Archived from the original on August 25, 2009. Retrieved July 24, 2009.
  12. "A Concept for NASA's Mars 2016 Astrobiology Field Laboratory". SpaceRef. September 1, 2007. Retrieved July 21, 2009.