XLR81

Last updated
XLR81
Agena D 108.jpg
Standard Agena D 108 delivery to final assembly for Gemini Agena target vehicle 5003. [1]
Country of originUnited States
Date1957
First flight1963-07-12 [2]
Last flight1984-04-17 [2]
Manufacturer Bell Aerosystems Company [3]
ApplicationUpper stage engine [4]
Associated LV Thor, Thorad, Atlas and Titan
PredecessorBell 8081
SuccessorBell 8247
StatusRetired
Liquid-fuel engine
Propellant RFNA [3] / UDMH [3]
Mixture ratio2.55 [5]
Cycle Gas generator [3]
Configuration
Chamber1 [3]
Nozzle ratio45 [2]
Performance
Thrust, vacuum71.2 kN (16,000 lbf) [2]
Chamber pressure 3.49 MPa (506 psi) [2]
Specific impulse, vacuum293 s (2.87 km/s) [2]
Burn time265 s [2]
Restarts2 [2]
Gimbal range ±2.5° [6] [7]
Dimensions
Length2.11 m (83.2 in) [7]
Diameter0.90 m (35.5 in) [6]
Dry weight134 kg (296 lb) [7]
Used in
RM-81 Agena [2]
Model 8048 Bell Model 8048 Engine.jpg
Model 8048

The Bell Aerosystems Company XLR81 (Model 8096) was an American liquid-propellant rocket engine, which was used on the Agena upper stage. It burned UDMH and RFNA fed by a turbopump in a fuel rich gas generator cycle. The turbopump had a single turbine with a gearbox to transmit power to the oxidizer and fuel pumps. The thrust chamber was all-aluminum, and regeneratively cooled by oxidizer flowing through gun-drilled passages in the combustion chamber and throat walls. The nozzle was a titanium radiatively cooled extension. The engine was mounted on a hydraulic actuated gimbal which enabled thrust vectoring to control pitch and yaw. Engine thrust and mixture ratio were controlled by cavitating flow venturis on the gas generator flow circuit. Engine start was achieved by solid propellant start cartridge. [6]

Contents

Variants

Starting as an air-launched missile engine and finishing as a multi-mission general propulsion for the space age, the basic design went through a series of iterations and versions that enabled it to have a long and productive career.

See also

Related Research Articles

Specific impulse is a measure of how efficiently a reaction mass engine, such as a rocket using propellant or a jet engine using fuel, generates thrust.

<span class="mw-page-title-main">RM-81 Agena</span> American rocket upper stage and satellite bus

The RM-81 Agena was an American rocket upper stage and satellite bus which was developed by Lockheed Corporation initially for the canceled WS-117L reconnaissance satellite program. Following the division of WS-117L into SAMOS and Corona for image intelligence, and MIDAS for early warning, the Agena was later used as an upper stage, and an integrated component, for several programs, including Corona reconnaissance satellites and the Agena Target Vehicle used to demonstrate rendezvous and docking during Project Gemini. It was used as an upper stage on the Atlas, Thor, Thorad and Titan IIIB rockets, and considered for others including the Space Shuttle and Atlas V. A total of 365 Agena rockets were launched between February 28, 1959 and February 1987. Only 33 Agenas carried NASA payloads and the vast majority were for DoD programs.

<span class="mw-page-title-main">Liquid-propellant rocket</span> Rocket engine that uses liquid fuels and oxidizers

A liquid-propellant rocket or liquid rocket utilizes a rocket engine burning liquid propellants. (Alternate approaches use gaseous or solid propellants.) Liquids are desirable propellants because they have reasonably high density and their combustion products have high specific impulse (Isp). This allows the volume of the propellant tanks to be relatively low.

<span class="mw-page-title-main">RS-25</span> Space Shuttle and SLS main engine

The Aerojet Rocketdyne RS-25, also known as the Space Shuttle Main Engine (SSME), is a liquid-fuel cryogenic rocket engine that was used on NASA's Space Shuttle and is used on the Space Launch System (SLS).

<span class="mw-page-title-main">Rocketdyne J-2</span> Rocket engine

The J-2, commonly known as Rocketdyne J-2, was a liquid-fuel cryogenic rocket engine used on NASA's Saturn IB and Saturn V launch vehicles. Built in the United States by Rocketdyne, the J-2 burned cryogenic liquid hydrogen (LH2) and liquid oxygen (LOX) propellants, with each engine producing 1,033.1 kN (232,250 lbf) of thrust in vacuum. The engine's preliminary design dates back to recommendations of the 1959 Silverstein Committee. Rocketdyne won approval to develop the J-2 in June 1960 and the first flight, AS-201, occurred on 26 February 1966. The J-2 underwent several minor upgrades over its operational history to improve the engine's performance, with two major upgrade programs, the de Laval nozzle-type J-2S and aerospike-type J-2T, which were cancelled after the conclusion of the Apollo program.

<span class="mw-page-title-main">RL10</span> Liquid fuel cryogenic rocket engine, typically used on rocket upper stages

The RL10 is a liquid-fuel cryogenic rocket engine built in the United States by Aerojet Rocketdyne that burns cryogenic liquid hydrogen and liquid oxygen propellants. Modern versions produce up to 110 kN (24,729 lbf) of thrust per engine in vacuum. Three RL10 versions are in production for the Centaur upper stage of the Atlas V and the DCSS of the Delta IV. Three more versions are in development for the Exploration Upper Stage of the Space Launch System and the Centaur V of the Vulcan rocket.

<span class="mw-page-title-main">SpaceX Merlin</span> Rocket engine in SpaceX Falcon launch vehicles

Merlin is a family of rocket engines developed by SpaceX for use on its Falcon 1, Falcon 9 and Falcon Heavy launch vehicles. Merlin engines use RP-1 and liquid oxygen as rocket propellants in a gas-generator power cycle. The Merlin engine was originally designed for sea recovery and reuse, but since 2016 the entire Falcon 9 booster is recovered for reuse by landing vertically on a landing pad using one of its nine Merlin engines.

<span class="mw-page-title-main">Reaction Motors XLR99</span>

The Reaction Motors LR99 engine was the first large, throttleable, restartable liquid-propellant rocket engine. Development began in the 1950s by the Reaction Motors Division of Thiokol Chemical Company to power the North American X-15 hypersonic research aircraft. It could deliver up to 57,000 lbf (250 kN) of thrust with a specific impulse of 279 s (2.74 km/s) or 239 s (2.34 km/s) at sea level. Thrust was variable from 50 to 100 percent, and the restart capability allowed it to be shut down and restarted during flight when necessary.

<span class="mw-page-title-main">RD-58</span>

The RD-58 is a rocket engine, developed in the 1960s by OKB-1, now RKK Energia. The project was managed by Mikhail Melnikov, and it was based on the previous S1.5400 which was the first staged combustion engine in the world. The engine was initially created to power the Block D stage of the Soviet Union's abortive N-1 rocket. Derivatives of this stage are now used as upper stages on some Proton and Zenit rockets. An alternative version of the RD-58 chamber, featuring a shorter nozzle, was used as the N-1's roll-control engine.

<span class="mw-page-title-main">YF-73</span>

The YF-73 was China's first successful cryogenic liquid hydrogen fuel and liquid oxygen oxidizer gimballed engine. It was used on the Long March 3 H8 third stage, running on the simple gas generator cycle and with a thrust of 44.15 kilonewtons (9,930 lbf). It had four hinge mounted nozzles that gimbaled each on one axis to supply thrust vector control and was restart capable. It used cavitating flow venturis to regulate propellant flows. The gas generator also incorporated dual heat exchangers that heated hydrogen gas, and supplied helium from separate systems to pressurize the hydrogen and oxygen tanks. The engine was relatively underpowered for its task and the start up and restart procedures were unreliable. Thus, it was quickly replaced by the YF-75.

The YF-75 is a liquid cryogenic rocket engine burning liquid hydrogen and liquid oxygen in a gas generator cycle. It is China's second generation of cryogenic propellant engine, after the YF-73, which it replaced. It is used in a dual engine mount in the H-18 third stage of the Long March 3A, Long March 3B and Long March 3C launch vehicles. Within the mount, each engine can gimbal individually to enable thrust vectoring control. The engine also heats hydrogen and helium to pressurize the stage tanks and can control the mixture ratio to optimize propellant consumption.

<span class="mw-page-title-main">YF-77</span> Chinese rocket engine

The YF-77 is China's first cryogenic rocket engine developed for booster applications. It burns liquid hydrogen fuel and liquid oxygen oxidizer using a gas generator cycle. A pair of these engines powers the LM-5 core stage. Each engine can independently gimbal in two planes. Although the YF-77 is ignited prior to liftoff, the LM-5's four strap-on boosters provide most of the initial thrust in an arrangement similar to the European Vulcain on the Ariane 5 or the Japanese LE-7 on the H-II.

<span class="mw-page-title-main">LE-7</span> Japanese hydrolox staged combustion rocket engine

The LE-7 and its succeeding upgrade model the LE-7A are staged combustion cycle LH2/LOX liquid rocket engines produced in Japan for the H-II series of launch vehicles. Design and production work was all done domestically in Japan, the first major (main/first-stage) liquid rocket engine with that claim, in a collaborative effort from the National Space Development Agency (NASDA), Aerospace Engineering Laboratory (NAL), Mitsubishi Heavy Industries, and Ishikawajima-Harima. NASDA and NAL have since been integrated into JAXA. However, a large part of the work was contracted to Mitsubishi, with Ishikawajima-Harima providing turbomachinery, and the engine is often referred to as the Mitsubishi LE-7(A).

<span class="mw-page-title-main">Rocket propellant</span> Chemical or mixture used as fuel for a rocket engine

Rocket propellant is the reaction mass of a rocket. This reaction mass is ejected at the highest achievable velocity from a rocket engine to produce thrust. The energy required can either come from the propellants themselves, as with a chemical rocket, or from an external source, as with ion engines.

TM65 is a rocket engine developed by Copenhagen Suborbitals. TM65 uses Ethanol and liquid oxygen as propellants in a pressure-fed power cycle.

The TR-201 or TR201 is a hypergolic pressure-fed rocket engine used to propel the upper stage of the Delta rocket, referred to as Delta-P, from 1972 to 1988. The rocket engine uses Aerozine 50 as fuel, and N
2
O
4
as oxidizer. It was developed in the early 1970s by TRW as a derivative of the lunar module descent engine (LMDE). This engine used a pintle injector first invented by Gerard W. Elverum Jr. and developed by TRW in the late 1950s and received US Patent in 1972. This injector technology and design is also used on SpaceX Merlin engines.

<span class="mw-page-title-main">Ascent propulsion system</span> Apollo Lunar Module rocket engine

The ascent propulsion system (APS) or lunar module ascent engine (LMAE) is a fixed-thrust hypergolic rocket engine developed by Bell Aerosystems for use in the Apollo Lunar Module ascent stage. It used Aerozine 50 fuel, and N
2
O
4
oxidizer. Rocketdyne provided the injector system, at the request of NASA, when Bell could not solve combustion instability problems.

<span class="mw-page-title-main">S1.5400</span> First staged combustion rocket engine ever developed, for the Soviet space program

The S1.5400 was a Soviet single-nozzle liquid-propellant rocket engine burning liquid oxygen and kerosene in an oxidizer-rich staged combustion cycle, being the first rocket engine to use this cycle in the world. It was designed by V. M. Melnikov, an alumnus of Isaev, within Korolev's Bureau, for the Molniya fourth stage, the Block-L. It was also the first Soviet engine designed for start and restart in vacuum and had the highest Isp at the time of its deployment.

The RD-0216 and RD-0217 are liquid rocket engines, burning N2O4 and UDMH in the oxidizer rich staged combustion cycle. The only difference between the RD-0216 and the RD-0217 is that the latter has not a heat exchanger to heat the pressuring gasses for the tanks. Three RD-0216 and one RD-0217 were used on the first stage of the UR-100 ICBM. The engines were manufactured until 1974 and stayed in operational use until 1991. More than 1100 engines were produced.

<span class="mw-page-title-main">KTDU-80</span>

The KTDU-80 (Russian: Корректирующе-Тормозная Двигательная Установка, КТДУ) is the latest of a family of integrated propulsion system that KB KhIMMASH has implemented for the Soyuz since the Soyuz-T. It integrates main propulsion, RCS and attitude control in a single system pressure fed from a common dual string redundant pressurized propellant system. The common propellant is UDMH and N2O4 and the main propulsion unit, is the S5.80 main engine. It generates 2.95 kN (660 lbf) of thrust with a chamber pressure of 880 kPa (128 psi) and a nozzle expansion of 153.8 that enables it to achieve a specific impulse of 302 s (2.96 km/s). It is rated for 30 starts with a total firing time of 890 seconds. The integrated system without the pressurization or tanks weighs 310 kg (680 lb); it is 1.2 m (47 in) long with a diameter of 2.1 m (83 in).

References

  1. "Atlas Agena D SLV-3". Encyclopedia Astronautica. Archived from the original on 2013-10-17. Retrieved 2015-06-24.
  2. 1 2 3 4 5 6 7 8 9 10 11 12 13 Brügge, Norbert. "Propulsion and History of the U.S. Agena upper stage". www.b14643.de. Retrieved 2015-06-17.
  3. 1 2 3 4 5 6 "Section II - Agena and Support Systems". Athena Payloads User Handbook (pdf). Lockheed Missile & Space Company. 1971-03-01. pp. 2–4. Retrieved 2015-06-17.
  4. 1 2 "Bell 8096". Encyclopedia Astronautica. Archived from the original on 2016-03-04. Retrieved 2015-06-17.
  5. 1 2 Carter, W. K.; Piper, J. E.; Douglass, D. A.; Waller, E. W.; Hopkins, C. V.; Fitzgerald, E. T.; Sagawa, S. S.; Carter, S. A.; Jensen, H. L. (1974-03-15). "Section 3.2.3". Reusable Agena Study Final Report (Technical Volume II) (PDF). pp. 3–8. Retrieved 2015-06-17.
  6. 1 2 3 4 5 6 7 8 9 10 Roach, Robert D. The Agena Rocket Engine... Six Generations of Reliability in Space Propulsion (pdf). Retrieved 2015-06-17.
  7. 1 2 3 4 5 Carter, W. K.; Piper, J. E.; Douglass, D. A.; Waller, E. W.; Hopkins, C. V.; Fitzgerald, E. T.; Sagawa, S. S.; Carter, S. A.; Jensen, H. L. (1974-03-15). "3.3.2 Propulsion Systems". Reusable Agena Study Final Report (Technical Volume II) (PDF). pp. 3–37. Retrieved 2015-06-17.
  8. Grassly, Sarah A. "Introduction". Agena Flight History as of 31 December 1967 (PDF). USAF. p. IX. Retrieved 2015-06-18.
  9. 1 2 3 4 5 6 "Bell/Texton Space Engines (1935-Present)". www.alternatewars.com/BBOW/. Big Book of Warfare. Retrieved 2015-06-17.
  10. 1 2 "Bell 8048". Encyclopedia Astronautica. Archived from the original on 2016-03-04. Retrieved 2015-06-17.
  11. "Bell 8081". Encyclopedia Astronautica. Archived from the original on 2017-02-04. Retrieved 2015-06-17.
  12. "1.1 General". USAF Propellant Handbook Volume II - Nitric Acid/Nitrogen Tetroxide Oxidiser (PDF). February 1977. pp. 1–3. Archived (PDF) from the original on June 18, 2015. Retrieved 2015-06-17.
  13. Carter, W. K.; Piper, J. E.; Douglass, D. A.; Waller, E. W.; Hopkins, C. V.; Fitzgerald, E. T.; Sagawa, S. S.; Carter, S. A.; Jensen, H. L. (1974-03-15). "4.5 Alternative Concepts". Reusable Agena Study Final Report (Technical Volume II) (PDF). pp. 4–20. Retrieved 2015-06-17.
  14. Carter, W. K.; Piper, J. E.; Douglass, D. A.; Waller, E. W.; Hopkins, C. V.; Fitzgerald, E. T.; Sagawa, S. S.; Carter, S. A.; Jensen, H. L. (1974-03-15). "2.3 NOMINAL SHUTTLE/AGENA UPPER STAGE CONCEPT". Reusable Agena Study Final Report (Technical Volume II) (PDF). pp. 2–4. Retrieved 2015-06-17.
  15. "Bell 8247". Encyclopedia Astronautica. Archived from the original on 2017-02-05. Retrieved 2015-06-17.
  16. "Appendix E". SP-4212 "On Mars: Exploration of the Red Planet. 1958-1978". NASA. pp. 465–469. Retrieved 2015-06-17.